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L, FOURIER-FEYNMAN
TRANSFORMS AND CONVOLUTION

JAE MoOON AHN

ABSTRACT. Let F(B) be the Fresnel class on an abstract Wiener
space (B, H,w) which consists of functionals F' of the form :

F(z) = /Hexp{i(hm)N}df(h), x € B,

where (-,-)™ is a stochastic inner product between H and B, and
f is in M(H), the space of all complex-valued countably additive
Borel measures on H.

We introduce the concepts of an L, analytic Fourier-Feynman
transform (1 < p < 2) and a convolution product on F(B) and ver-
ify the existence of the L, analytic Fourier-Feynman transforms for
functionls in F(B). Moreover, we verify that the Fresnel class F(B)
is closed under the L, analytic Fourier-Feynman transform and the
convolution product, respectively. And we investigate some inter-
esting properties for the n-repeated L, analytic Fourier-Feynman
transform on F(B). Finally, we show that several results in [9] come
from our results in Section 3.

1. Introduction

In [2], Brue investigated initially the theory of an L; analytic Fourier-
Feynman transform on a classical Wiener space, and in [3] Cameron
and Storvick introduced the concept of an Ly analytic Fourier-Feynman
transform on a classical Wiener space. In [10], Johnson and Skoug de-
veloped an L, analytic Fourier-Feynman transform theory for 1 <p <2
which extended the results in [2;3]. In [8;9], Huffman, Park and Skoug
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developed an L, analytic Fourier-Feynman transform theory on certain
classes of functionals defined on a classical Wiener space and they defined
a convolution product of two functionals on the classical Wiener space
and then showed that the Fourier-Feynman transform of the convolu-
tion product was a product of Fourier-Feynman transforms. In [1], the
author investigated the L; analytic Fourier-Feynman transform theory
on the Fresnel class F(B) of an abstract Wiener space.

The paper is organized as follows. In Section 2, we introduce the basic
concepts and the notations for our research. In Section 3, we obtain our
main results for the n-repeated L, analytic Fourier-Feynman transform
theory on the Fresnel class F(B) of an abstract Wiener space. In the
last section, we show that several results in [9] come from our results in
Section 3.

2. Definitions and Preliminaries

Let H be a real separable infinite dimensional Hilbert space with

norm |- | = +/(,-), where (-,-) is an inner product on H. Let || - ||,
be a fixed measurable norm on H ( for definition see [13] ). Let B be
the completion of H with respect to the measurable norm | - ||, and

pe(t > 0) the Gauss measure on H with variance t. Then g, induces
a cylinder set measure fi; on B which in turn extends to a countably
additive measure w; on (B, B(B)), where B(B) is the Borel o-algebra of
Borel sets in B. wy is called the Wiener measure with variance t and it
has the following properties:

{ wet(E) = wi(sY2E), 5> 0,
From now on, we shall use w instead of wy, identifying w with w.

Let {e,} denote a complete orthonormal set of H such that e,’s are
in B*, the topological dual space of B. For each h € H and x € B, we
define a stochastic inner product (-,-)~ between H and B as follows:

(2.1)

n

(2.2) (h, )~ = nh_)rrolo k;(h, er)(er, z) , if the limit exists

0 , otherwise,

where (-, ) is the natural dual pairing between B* and B.
It is well known [11,12] that for every h € H, (h,x)™ exists for w;-
a.e. © € B, and (h,-)~ is a Borel measurable functional on B having a
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Gaussian distribution with mean zero and variance t|h|*> with respect to
wy. Furthermore, it is obvious that for each real number «, (ah, z)~ =
a(h,z)~ = (h,az)™ holds for every h € H and = € B.

Let (B, H,w;) be an abstract Wiener space. For each A > 0, let
S\(B) be the completion of B(B) with respect to wy, and let N,y (B) =
{A € S\(B) : wA(A) = 0}. Let S(B) = (oo SA(B), and N (B) =
Myso Na(B). Every set in S(B) (‘or N(B) ) is called a scale-invariant
measurable ( or scale-invariant null ) set. A real ( or complex )-valued
functional F' on B is called scale-invariant measurable if F'is measurable
with respect to S(B). A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (briefly, s-a.e.).
If two functionals F' and G are equal s-a.e., then we write F' ~ G. It is
easy to show that this relation ~ is an equivalence relation on the class
of functionals on B. For a functional F' on B, we will denote by [F] the
equivalence class of functionals which are equal to F' s-a.e..

DEFINITION 2.1. Let (B, H,w) be an abstract Wiener space and
M(H) the space of all complex-valued countably additive Borel mea-
sures on H. Consider the functional F' defined for s-a.e. © € B by the
formula

(2.3) Fla) = /H expi(h, )} df (h),

where f is in M(H). Let F(B) denote the collection of equivalence
classes [F| of functionals which are equal to F' s-a.e. on B. Then we call
F(B) the Fresnel class on the abstract Wiener space (B, H,w).

REMARK 2.2. (1) As is customary, we will identify a functional with
its equivalence class and think of F(B) as a class of functionals on B
rather than as a class of equivalence classes.

(2) M(H) is a Banach algebra over the complex fields under the total
variation norm || - ||, where the convolution is taken as the multiplication

( see [7]). There exists an isomorphism of Banach algebras between
M(H) and F(B) ( see [11; Proposition 2.1]. ).

Throughout this paper, let R and C denote the real numbers and the
complex numbers, respectively, and put C; = {z € C :Re(z) > 0} and
C, = {z € C:z+#0,Re(z) > 0}, where Re(z) means the real part of
the complex number z.
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Let F' be a complex-valued scale-invariant measurable functional on
the abstract Wiener space (B, H,w) such that the Wiener integral

J(F;\) = / FOY2g) dw(x)

exists as a finite number for all A > 0. If there exists an analytic function
J*(F; z) of z in the half-plane C, such that J*(F;\) = J(F;\) for all
A > 0, then we define this analytic extension J*(F;z) of J(F;\) to be
the analytic Wiener integral of F over B with parameter z and we write

/ F(z)dw(x) =TI (F;z) = J(F;2)
B
for all z € C,.

Let ¢ be a non-zero real number and F' a functional on B such that
the analytic Wiener integral Z°"(F’; z) exists for all z € C,. If the
following limit exists, then we call it the analytic Feynman integral of F
over B with parameter ¢ and we write

an fq
/ F(z)dw(z) = I (F;q) = lim ZI°"(F;z),
B 2— —iq

where z approaches —iq through C,.

DEFINITION 2.3. Let 1 < p < 2 and let {F},} and F be scale-invariant
measurable functionals on the abstract Wiener space (B, H,w) such that
for each p > 0,

(2.4) lim [ |F,(pz) — F(px)[ dw(z) = 0.
n—oo B

Then we write

(2.5) Lim.(w?)(F,) ~ F,

n—oo

and we call F' the scale-invariant limit in the mean of order p', where p
and p’ are related by 1/p+1/p' = 1.

A similar definition is understood when n is replaced by the continu-
ously varying parameter z.

Now we are ready to define an L, analytic Fourier-Feynman transform
(1 < p < 2) on the Fresnel class F(B).
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DEFINITION 2.4. For each z € C,, we define a transform F.(F) of a
functional F' on the abstract Wiener space (B, H,w) as follows:

(2.6) (FAF))(y) = T"(F(-+y)iz), y€B.

Let ¢ be a non-zero real number. In case that 1 < p < 2, we define
the L, analytic Fourier-Feynman transform F g, (F) for a functional F
on (B, H,w) by

(2.7) (Faw) (F))(y) = L1 m.(wf ) (F=(F))(y)

Ao
z——iq
for s-a.e. y € B, whenever this limit exists, where z approaches —iq
through C,.

Let ¢ be a non-zero real number. In case that p = 1, we define the
Ly analytic Fourier-Feynman transform Fg1)(F) of F' by
(2.8) (Flan(F)(y) = lim (F(F))(y),

z——1iq

for s-a.e. y € B, where z approaches —iq through C, .

We note that for 1 < p < 2, Fgp)(F) is defined only s-a.e.. We
also note that if F4,,)(F) exists and if F' =~ G, then Fg,)(G) exists and
Flgn) (F) = Flgp)(G)-

We finish this section by giving the definition of the convolution prod-
uct of two functionals on the abstract Wiener space (B, H,w).

DEFINITION 2.5. Let F' and G be two complex-valued functionals on
the abstract Wiener space (B, H,w). For each z € (Nj+ , we define their
convolution product (F % G), as follows :

In case that z belongs to C,,

29 (Fx6Lw) =T [F(s+9) 65— ) <]

for y € B, if it exists.
In case that z = —ig (¢ € R—{0}),

210) (6w =T [F( ) ¢( 5 =1) ]

V2
for y € B, if it exists.
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3. L, Analytic Fourier-Feynman Transforms and Convolu-
tion

We begin this section by showing the existence of the L, analytic
Fourier-Feynman transform for every functional in the Fresnel class F(B).

THEOREM 3.1. Let F' € F(B) be given by (2.3) and let 1 < p < 2.
Then the transform F.(F) exists for all z € C, it belongs to F(B), and
the following formula

81 (FE)) = [ esp{—g I it} e

holds for s-a.e. y € B, where f is in M(H).
Moreover, the L, analytic Fourier-Feynman transform F ., (F') exists
for all ¢ € R — {0}, it belongs to F(B) , and the following formula

82 FanP)0) = [ exo{ =5 b +ilh) )
holds for s-a.e. y € B, where f is in M(H).

Proof. We shall first calculate the transform F(F') for ¢ > 0. Using
Fubini’s Theorem and the following integral formula :

2
(3.3) /exp{@'t(h,xr}dw(x) —op{-TIHP}, heH teR
B
we have, for each t > 0 |

(FE) () = [y [uexpli(h. & +y) "} df (h) dw(z)

(3.4) = [exp{—L|h> +i(h,y)~} df (h)

for s-a.e. y € B.

By using Morera’s Theorem, we can verify that the last expression
of (3.4) is an analytic function of ¢ throughout C,, and is a bounded
continuous function of ¢ throughout @+ for all y € B, because f is in
M(H). Therefore the transform F,(F) exists for all z € C, , and finally
we can show that (3.1) and (3.2) hold.

Finally we shall show that F,(F') belongs to F(B) for every z € C,..
Let z be in C; and define a set function n : B(H) — C as follows :

oE) = [ exp{=5 WP} ar(h. B e B
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where B(H) is the Borel o-algebra of H. Then it is obvious that 7
belongs to the Banach algebra M(H). Moreover, (3.1) is expressed as
follows :

(FAF) () = /H exp{i(hy)™} dn(h).

Hence F.(F') belongs to F(B).
Similarly, we can show that F,., (F) belongs to F(B). O

DEFINITION 3.2. Let F be a functional defined on the abstract Wiener
space (B, H,w) and define a transform J:t(n)(F )(t > 0) of F as follows :

(n) —
FF) = (Fo- o F)(F),

n

that is, ft(") means the n-times composition of F;, where F; is equal to
F, for z > 0 in (2.6) of Definition 2.4, and n is a natural number.

Let Z"(F) be an analytic extension of F™(F) as a function of
z € C,. In case that 1 < p < 2, for each ¢ € R — {0}, we define the

n-repeated L, analytic Fourier-Feynman transform F((;;)(F ) of F' by
(3.5) Fo

where 2z approaches —ig through C, .
In case that p =1, for each ¢ € R — {0}, we define the n-repeated L,

analytic Fourier-Feynman transform F((;)l)(F) of F' by

(3.6) FM(F) ~ lim (FM(F)),

(¢:1) z——1iq
where z approaches —iq through C,.
Note that fz(o)(F) = F = ‘7:(((?;)1))
1
FY (F) = Flgp) (F).

(g;p)

(F), and F)(F) = F.,(F) and

By using the mathematical induction and proceeding as in the proof
of Theorem 3.1, we can obtain the following theorem.

THEOREM 3.3. Let ' € F(B) be given by (2.3) and let 1 < p < 2.

Then the transform fz(”)(F ) exists for all z € C, it belongs to F(B),
and the following formula

87 (EE)W) = [ exp{-gIhE + i) )
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holds for s-a.e. y € B, where f isin M(H) and n =10,1,2,---
Moreover, for each ¢ € R — {0}, the n-repeated L,, analytic Fourier-
Feynman transform F." )(F) exists, it belongs to F(B), and the follow-

ing formula o
(n) _ in 1~
B8 (FE)0) = [ exo{ - hE i)}

holds for s-a.e. y € B, where f isin M(H) andn=0,1,2,---.

Note that (3.7) and (3.8) are reduced to (3.1) and (3.2), respectively,
if we take n =1 in (3.7) and (3.8).

THEOREM 3.4. Let F' and G be in F(B) which are given by (2.3).
Then the convolution product ((]—"Z(n)F) * ( ém)G))Z exists for each z €
C,, it belongs to F(B), and the following formula
(3.9)

(FIF) + (FIMaG)) (y) 1 |

= fexp{— 2 lul? = 2lof? — Lu— v + Z(u+ v,9) } df(u) dg(v)
holds for s-a.e. y € B, where f and g are in M(H) and m,n =
0,1,2,--- .

Furthermore, the convolution product ((.7:(7?) F) x (f((ﬁ)G))q exists

(a:p)
for every g € R — {0}, it belongs to F(B), and it is given by

(3.10)
(FP) * Fig @), )
— fy exp{—Eu® = 2JoP — £u—vP + Z(u+v,9)7} df(w) dg(v)

for s-a.e. y € B, where f and g are in M(H) and m,n=0,1,2,---.
Proof. By using Fubini’s Theorem, Definition 2.5, (3.3), and (3.7), we

first calculate ((ft(")F ) * (ft(m)G)) , for every t > 0 as follows :

(FF) (7 G)) ()
= [a(FF) (5 + %)) (ft(m)G) (%(y — 1)) dw(@)
= [ exp{ =5 |ul> — Go]* + 5 (u+v,y)7}
UBexp{\Fu—vx ~} dw(z)] df (u) dg(v)
= [ exp{ =5 |ul> = 510> + 5w +v,y)~ — glu—v]*} df (u) dg(v).

By using Morera’s Theorem, we can verify that the last expression is
an analytic function of ¢ throughout C,, and is a bounded continuous
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function of ¢t over (Lr for all y in B, because f and ¢ are in M(H).
Therefore, we can show that (3.9) and (3.10) hold.

Next we shall show that ((fzn)F) * (]—"Zm)G))Z belongs to F(B) for
every z € C,. Let z be in C, and define a set function v : B(H?*) — C

v(E) = /Eexp{—;—z|u|2—g|v|2—i|u—v|2} df (u) dg(v), E € B(H?).

Then v is a complex-valued countably additive Borel measure on B(H?).
Now define a function ¢ : H?> — H as follows :

1

u,v) = —(u+v), (u,v)e H>.
p(u, v) \/5( ), (u,0)
Then ¢ is continuous , and so it is a Borel measurable function. Hence
p = v -~ ! belongs to the Banach algebra M(H). By using the Change
of Variable Formula, we have

(FWF) « (F™G)) () = /H exp{i(w, )~} du(w)

Hence ((.7:;5")}7) * (fém)G’))Z belongs to F(B).

Similarly, we can show that ((F, ™) F) x (7,

(@) (m) G))q belongs to F(B).

(g;p)
O

Our next theorem shows that the L, analytic Fourier-Feynman trans-
form of the convolution product for two functionals in the Fresnel class
F(B) is a product of Fourier-Feynman transforms for each functional.

THEOREM 3.5. Let ' and G be as in Theorem 3.4 and let 1 < p < 2.
Then the transform F.((F\VF) (f,z(m)G))Z exists for all z € C, and

the following formula
(3.11)
(FAFDF) # (FG):) () = (FIMIF) (5) (Fm6) ()

holds for s-a.e. y € B, where m,n =0,1,2,---

Furthermore, for each ¢ € R — {0}, L, analytic Fourier-Feynman
transform F gy ((J”:((;;)F) * (f(((ZQ)G))q is given by
(3.12)

(F(q;p)((}—@ F) * (F((ZZ)G))Q)(Q) = (F(nH)F)(

(g;p)

D).
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where m,n =10,1,2,....

Proof. By using Fubini’s Theorem, (3.3) and (3.9), we first calculate
the transform ft((ﬂ(")F) * (ﬂ(m)G)) , for all £ > 0 as follows:
(3.13)
(ft((ﬂ(")( ) * (F"0)) )
:fB((}_tn « (FMa) )t( "HJ) duw(x .
= [z exp{~3 W silvl = gglu — UI2 ji(u +v,y)"}
[fBeXp{\’F u+v,z)"} dw ()] df (u) dg(v)
= [y oxp{ =52 uf? — T o + I (u+ v, )~ Ydf (u)dg(v).

By using Morera’s Theorem, we can verify that the last expression
in (3.13) is an analytic function of ¢ throughout C, , and is a bounded

continuous function of ¢ over ((Nj+ for all y € B, because f and g are in
M(H). Therefore, for each z € C,, the following formula
(3.14)

(F((FF) g(’” G)): )@

= [y exp{ =2 uf? — o2 + 2 (u + v, y) ™} df (u) dg(v)
holds for s-a.e. y € B.

On the other hand, using (3.7), we can show that for every z € C,,
the following formula

(3.15)
(FUF )(%)(F(m+1 &) (%)
= Jy exp{ =152 ul? = 5o
holds for s-a.e. y € B.

Therefore, (3.11) follows from (3.14) and (3.15), and finally (3.12)
comes from (3.11) with the help of Definition 2.3. O

24 < (u+0,9)~ }df (u)dg(v)

Our next theorem shows that an interesting Parseval’s identity holds
on the Fresnel class F(B).

THEOREM 3.6. Let F' and G be as in Theorem 3.4 and let 1 < p < 2.
Then for each ¢ € R — {0}, the following Parseval’s identity holds :

Fwaw) Flam) (F0 F) <f<’” G))q)(0)

— P (F F) () (FE ) (—)) 0),

where m, n =0,1,2,---

(3.16)
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Proof. We first calculate the transform F; (Fg, ((]:(n F)s(F™ G))q)

(a:p) (a:p)
for all t > 0, where ¢ is a non-zero real number. Usmg Fubini’s Theorem,

(3.3), (3.8), and (3 12), we have, for all ¢ > 0,

Fi(Flam (Fiy F) # (Fir G))g) (0)
—ﬂ((fi?,;l )( =) (FamiVG) (55))(0)

= [ (Fo ) (& )(f&?G)(x)dw(x) |

—fH2eXP{ ”*”\u!? LD w2} [ [ exp{ T (u + v, 2)~ } dw(w)]
-df (u) dg(v)

= [, exp{— Z"“ V|2 — “m*”w Llu+v[?} df (u) dg(v).

Since the last expression has an analytic extension for ¢ over C,, and
is a bounded continuous function of ¢ over C,, we can show that the
following formula

Fiegn) Flam) (FULF) # (Fim) G))) (0)

(g;p)

(3.17) =1iggl(w;”)ft(F, <<f"> F) <f<m>G>>)<o>
= Jon exp{—2uf? — 2o — £[u— o]} df () dg(0)
holds.
Next we calculate the transform ]-"t((]:(:;)F)(75)(]:(((;:2)(?)(—75))(0)

for all ¢ > 0. Using (3.3) and Fubini’s Theorem, we obtain the following
formula

ﬂ((ﬂqp)F)(;Q) (Fm G) (= 5))(0)

= fB( F) (_t) (F((Q)G)(__) dw ()
szeXP{ lZIUIQ—%Ivl }[fBeXp{f — v, )~ }dw(z)|df (u) dg(v)
= [ exp{—5elul* — S2[ol* — glu — v|*} df (u) dg(v).

Since the last expression has an analytic extension for ¢ over C, , and
is a bounded continuous function of ¢ throughout C,, we can show that
the following formula

Fan (FamF) (55) (FamG) (=5))(0)
(3.18) =Li m(wp )ft((f ;;)F) () (f((;”g)G) (=)0
szexp{ rlul?® = S2ol* = £u —v[*} df (u) dg(v)

holds.
Therefore, (3.16) comes from (3.17) and (3.18). O
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THEOREM 3.7. Let ' and G be as in Theorem 3.4 and let 1 < p < 2.
Then for each non-zero real number q, the following formula
(3.19)

(n) (m) _ (n—1) ' (m—1) '
<(‘7:(q;p)F)*<]:(q;p)G)>_q(y) - f(q;p) <<‘7:(q;p) F) (E) (F(q;p) G) (E)) (y)
holds for s-a.e.y € B, where m,n =1,2,3,---

Proof. Let ¢ be any non-zero real number. Using (3.3), (3.8) and Fu-
bini’s Theorem, for each ¢t > 0 we first calculate the expression ((]:(( ) )

(.7: (m) G)) (y) for each y € B as follows

(3.90)
((Fo F) * (Fiin ), w)
= [ (Fan F)(F5 (0 + ) (Fam) @) (F5(y — &) dw(@)
—sz exp{ﬁ(u—l—v,y)w—Z2—Z|U‘2—%|U|2}[ Xp{\ﬁ va)N}

-dw ()] df (u) dg(v . A
— fygeexp{ 5t v,y)~ — 2l — 2o — Llu - v} df (u) dg(v).
By using Morera’s Theorem, we can verify that the last expression
in (3.20) is an analytic function of ¢ throughout C,, and is a bounded

continuous function of ¢ throughout (~3+. Therefore, for each non-zero
real number ¢, we have the following formula
(3.21)

(FomF) = (Fip @) )
= Lim(w?)((F) F) * (]—" a)),(v)

; s (a:p)
t—1q )
= [i exp{ J5(u+v,y)~ — |U\2 — Seol? + g lu — v} df (u)dg(v).

for s-a.e y € B.
Next, for each t > 0, we obtain the following formula

(3.22)

Ful(F, "I)F)( ) (7 )('2))()

— [ (F R (G (5 ))(Jr ) )( 7 (7 T ) dw(@)
szeXp{ (U+Uy — g Buf? - 1 1)| *}
[fBeXp{\/’(u‘i‘U xr }dw ]df( )d ( )

— Ty exp{ Syl 0.9) — LD — LR - L of?)

-df (u) dg(v)

for s-a.e. y € B.
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By using Morera’s Theorem, we can verify that the last expression
in (3.22) is an analytic function of ¢ throughout C,, and is a bounded
continuous function of ¢ throughout C,. Therefore, for each non-zero
real number, we have the following formula

(3.23)
P (Fi " F) () (F 6 () )
L) (P B ) (P 6) (7))

t— —

= [ exp{ﬁ utv,y)™ = Srlul® = Srfof? + o |u — vf? bdf (u)dg(v)

for s-a.e. y € B.
Therefore, (3.19) comes from (3.21) and (3.23). O

4. Corollaries

In this section we apply our results in the preceding section to the
classical Wiener space to obtain several results in [9] as corollaries.

Fix T > 0 and let B, = C,[0, T] be the real separable Banach space of
all real-valued continuous functions f on the closed interval [0, 7] which
vanish at 0 and equip B, with the uniform norm. Let (B,, W(B,), M)
be the classical Wiener space , where m,, is the Wiener measure on the
o-algebra W(B,) which is the completion of Borel o-algebra B(B,). Let
H, = H,[0,T] be the space of all real-valued functions f on [0,T] which
are absolutely continuous and vanish at 0, and whose derivative Df is
in L0, 7.

Define an inner product (-,-) on H, as follows :

T
(f.9) = [ (DN (Dg)s)ds. f.9€ Hy
0
Then H, is a real separable infinite dimensional Hilbert space, and (B,,

H,,m,) is a typical example of an abstract Wiener space ( see [13] ). It
is well known [11] that for each h € H,,

<m@~:A<meﬂﬂw

holds for s-a.e. = € H,, where fOT(Dh)(s) dz(s) is the Paley-Wiener-
Zygmund stochastic integral of Dh ( see [4] ).
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In [4], Cameron and Storvick introduced a Banach algebra S of func-
tionals on B, given as follows :

S = {F : F(x) :/L o exp{i/OTv(s)Jx(s)} df(v), f € M(L2[(),T])}.

Let I be the unitary operator from L»[0,T] onto H, given by
t
Iv(t) = / v(s)ds, for v € Ly[0,T] and t € [0,T].
0

It

(4.1) Flz) = /L . exp{i /0 " os) Tr(s) y dr (o)
for some f € M(L3[0,T7]), then we have

F@):/ exp{i(h, )~} d(f o I (h).

o

Conversely, if

Flz) :/ exp{i(h, )™} df (h)

o

for some f € M(H,), then we have

F(z) = /LQ[QT} exp{i/OTv(s) givx(s)} d(folI)(v).

Thus we show that F' € S if and only if F' € F(B,) ( see [11] ).

COROLLARY 4.1. ( Theorem 3.1 in [9]) Let F € S be given by (4.1)
and let 1 < p < 2. Then the L, analytic Fourier-Feynman transform

T )(F ) exists for all g € R — {0} , and the following formula
(4.2)

@ = [ enli [Cwoio - [ o}
holds for s-a.e. y € B,.

Proof. In (3.2) of Theorem 3.1, taking H = H,, Fgp)(F) = Tq(p)F,
and h = Iv for some v € Ly[0, 7], we have the desired result. O
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COROLLARY 4.2. ( Theorem 3.2 in [9]) Let F' and G be elements of
S with corresponding complex Borel measures f and g in M(L[0,T]).
Then the convolution product (F % G), exists for all ¢ € R — {0}, and
the following formula
i T o
(Fx@aly) = fryom exp{ 25 S (00) + w(®) dy(e)}

%3) exp{— - [T (0(t) — w(t))? de} df (v) dg(u0)
holds for s-a.e.y € B,.

Proof. In (3.10) of Theorem 3.4, taking m =n =0, H = H,, u = Iv
and v = [w for some v and w in Ly[0, T, we have the desired result. [

COROLLARY 4.3. ( Theorem 3.3 in [9]) Let F' and G be as in Corol-
lary 4.2. Then, for all ¢ € R — {0}, the following formula

(4.4) (T (F * G)g) (y) = (TP (F)) (w/vV2) (TP(G)) (y/V2)

holds for s-a.e. y € B, where1 <p < 2.

Proof. In (3.12) of Theorem 3.5, taking m = n = 0 and Fg) (F)
f((;;)l))(F ) =T q(p )(F ) for every F' € S, , we have the desired result. O

COROLLARY 4.4. ( Theorem 3.4 in [9]) Let F' and G be as in Corol-
lary 4.2. Then, for all ¢ € R — {0}, the Parseval’s identity

(4.5) coipy (T (F x G)g) () ()
| = Jehtn F(@/V2)G(=2/V/2) ma(dx)

holds where 1 < p < 2.

Proof. In (3.16) of Theorem 3.6, taking m = n = 0,
an fq
(Flam (£))(0) = /C gy F ) ), and Figy () = T (F)

for every F' € S, we have the desired result. m
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