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A FUBINI THEOREM FOR ANALYTIC
FEYNMAN INTEGRALS WITH APPLICATIONS

TiMOTHY HUFFMAN, DAVID SKOUG, AND DAVID STORVICK

ABSTRACT. In this paper we establish a Fubini theorem for various
analytic Wiener and Feynman integrals. We then proceed to obtain
several integration formulas as corollaries.

1. Introduction and preliminaries

Let Cy[0,T] denote one-parameter Wiener space; that is the space of
R-valued continuous functions z(¢) on [0,7] with z(0) = 0. In section
2, we establish a Fubini theorem for the analytic Wiener integral and
the analytic Feynman integral for various functionals F': Cy[0,T] — C.
In section 3, we use these Fubini theorems to establish several Feynman
integration formulas.

The usual Fubini theorem, see for example [14, p. 307], does not apply
to analytic Wiener and Feynman integrals since they are not defined in
terms of a countably additive nonnegative measure. Rather, they are
defined in terms of a process of analytic continuation and a limiting
procedure applied to a Wiener integral which is however based on such
a measure.

Let M denote the class of all Wiener measurable subsets of Cy[0, T
and let m denote Wiener measure. (Cy[0,7], M, m) is a complete mea-
sure space and we denote the Wiener integral of a Wiener integrable
functional F by

F(z)m(dx).
Co[0,7T]

A subset E of Cy[0,T) is said to be scale-invariant measurable [5,11]

provided pE € M for all p > 0, and a scale-invariant measurable set NV
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is said to be scale-invariant null provided m(pN) = 0 for each p > 0. A
property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s —a.e.). If two functionals ¥ and G
are equal s — a.e., we write F =~ (. For a rather detailed discussion of
scale-invariant measurability and its relation with other topics see [11].
In [15], Segal gives an interesting discussion of the relation between scale
change in Wiener space and certain questions in quantum field theory.

In [2,10], all of the functionals F on Wiener space and all the C-valued
functions f on R™ were assumed to be Borel measurable. But, as was
pointed out in [11,p.170], the concept of scale-invariant measurability in
Wiener space and Lebesgue measurability in R” is precisely correct for
the analytic Fourier-Feynman transform theory and the analytic Feyn-
man integration theory.

Throughout this paper we will assume that each functional F we
consider satisfies the conditions:

(1.1} F : Cy[0,T] — C is scale-invariant measurable.

(1.2) / |F'(pz)|m{dz) < oo for each p > 0.
Col0,T]

REMARK 1. Using Theorem 9 of [11], it follows that condition (1.2)
is equivalent to the condition

(1.3) f |F'(ay + bz)|d(m x m)(y, 2} < oo for all a,b > 0.
C3i0.71

REMARK 2. For F : Cy[0,T] — C satisfying conditions (1.1) and
(1.2) above, the usual Fubini theorem [14,p.307] implies that

f (/ Flay + bz}m(dy))m(dz)
Co[0,T] V¥ Col0,T]

(1.4) = fc - Flay + bz)d(m x m)(y, z)

= f (f Flay + bz)m(dz))m(dy)
Col0,T] JCol0,7]
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for all a,b > 0. In addition, by [11,Theorem 9], it follows that

(1.5) f Flay+bz)d(mxm)(y, z) =] F(v/a? + b2z)m(dx).
20,77 Col

0,71

LetC, = {A€C:ReA>0landCh = {A€C: A#0and Re A >
0}. Let F : Cy[0,T] — C be defined s — a.e. and satisfy conditions (1.1}
and (1.2) above, and for A > 0, let

= 71/29:m x).
o=/ o Fma

If there exists a function J*(A) analytic in C, such that J*(A) = J(A)
for all A > 0, then J*(}) is defined to be the analytic Wiener integral of
F over C4[0,T] with parameter A, and for A in C; we write

(1.6) / N Peymds) = 7).
Co[0,T]

Let ¢ be a real parameter (¢ # 0) and let F' be a functional whose
analytic Wiener integral exists for all A € C,. If the following limit
exists, we call it the analytic Feynman integral of F' with parameter g
and we write

anfq anuy
(1.7) / F(z)m(dz) = lim F(z)m(dz)
Cal0,T] A——ig fonio,T)

where A — —ig through values in C.

2. A Fubini theorem

In our first theorem we obtain a Fubini theorem for analytic Wiener
integrals.

THEOREM 1. Let F': Cy[0,T] — C satisfy conditions (1.1) and (1.2)
above. Then

CU[U,T] CU[D,T]
(2l1) QNN anwg
= / (f F(y + z)m(dz)) m(dy)
Col0,T]

Cp[0,T]
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where = means that if either side exists for all (A, 3) € C,. x C_, then
both sides exist for all (A, 3) € C4 x C. and equality holds.

Proof. We begin the proof by observing that the iterated analytic
Wiener integrals in (2.1) are defined by analytic continuation of the
Wiener integral of the functional F({-& 5y \/B)

This integrand has symmetric properties in the sense that if we let

(2.2) K(\y,B,2) = F(-~ o) jﬁ)

for
Ay, 8, 2) € (0, +oo) x Cy[0,T] x (0, 4+00) x Co{0, T,

then
KAy, B,2) = K(83,2,\9).

Consequently the Wiener integrals

A 7y
fcum 5t

and

Y F Nnlds
/;‘O[O,T]F(\/XjL\/B) (d2)

are actually the same (with A and § interchanged and y and z inter-
changed). Therefore we point out that

J = ymidy)

Co[0,T}

exists for all A € C;, > 0 and s — a.e. z € Cy[0,7T] if and only if

anwg y
F(—== + 2)m(dz)
-LD[O,T] \/X

exists for all € C4, A >0and s —a.e. y € Cy[0, 7.
Because the functional F' is a scale-invariant measurable functional
on Wiener space we may apply Theorem 9 of [11] and the usual Fubini
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theorem (see Royden, [14], p. 307) to conclude that for all (A,8) €
(0,400} x (0, +00) we have

/CO[O 7] quio T} \/_ \/_ —7 )ym(dy))m{dz)
Ln[ﬂ T} /Co 0,7 -\7-_ + ﬁ m(dz))m(dy)
(2.3) - ~/C§[0,T] (\/— \/—)d(m x m)(y, 2)

_ BHA
- ]C o 4 S mmiae)

T
= / F(—==)m(dz).
Co{0,7] 25

This last expression is defined for A > 0 and 4 > 0. For each 8 > 0 it
can be analytically continued in A for A € C. Also for A > 0 it can be
analytically continued in 3 for 3 € C,. Therefore since A € C,, 8€ C.
implies that 1% € C., an application of Lemma 1 of {1] enables us to
conclude that the last expression in (2.3} can be analytically continued
into C4 to equal the analytic Wiener integral

anw g
(2.4) 8 F(z)m(dx)
Cal0,T]
and Theorem 1 is proved. a

NoTaTION. To simplify some expressions it is helpful to let
(2.5)

anwy,
f Fla)m(dz) , A€ Cs
C'Q[O,T]

anfq
f Fla)m(dz) , A= —igc C%—C,.
Col0,T]

REMARK 3. Note that in the definition of the analytic Feynman
integral (1.7), we assumed that A could approach —ig in an arbitrary
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fashion through values in C,; i.e., the limit exists and is the same no
matter how A — —ig through values in C,.

The following lemma is a consequence of Remark 3.

LEMMA 1. Let F': Cy[0,T] — C be as in Theorem 1 above. Further-
more, assume that

any
(2.6) GO\ = ] F(z)m(ds)
Cof0,T)
exists for all A € C7,. Then G(A) is a continuous function of A on C7,
and hence is a uniformly continuous function of A on all compact subsets

OfC~+.
THEOREM 2. Let F': Cy[0,T] — C be as in Theorem 1 above. Fur-

thermore, assume that the analytic Feynman integral fg:[g‘?ﬂ F(z)m{dz)

exists for all real ¢ # 0. Let q; and qo be elements of R — {0} with

g1+ g2 ?é 0. Then
an fg,
f Fly+ z)m(dy)) m(dz)

/anfqz

C(][O,T] C’o[O,T]
an fq, an fq,

=[] Py amaz) | miay)
Co[0,T) Co[0,T]

where = means that if either side exists, both sides exist and equality
holds.

(2.7)

Proof. Let E be any subset of C7y x C7y containing the point
(—iq1,—1q2) and is such that (A, 3) € E implies that A+ 38 # 0. Then
(see Remark 3 and Lemma 1) the function

HO\B) = f ( ] F(y+z)m<dy)) m(dz)

Col0,T] Col0,7)

is continuous on E and is uniformly continuous on E provided F is
compact. Now assume that the left hand side of equation (2.7) exists.
Then by (1.7), the continuity of H, and Theorem 1, we obtain that
an fq, anfq,
f (/ Fly+ z)m(dy)) m(dz)
Chi{o, T

C{)[O,T]
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anig anu
= lim lim f Fy+ z)m m(dz)
A==it2 J glo,1] \M 70 Jeg[o, 7]

anwg anay,
= lim lim / F(y+ z)m(dy)

B——igz A——iaqy fex(0,7] \JCol0,7) )
aniy, G'nlﬂﬁ
= lim  lim / z)m(dz) | m(d
B——ige Ao—iqy Co[0,T] Co [O,T]
anwy anwg
= lim lim / F(y + z)m(dz)
A——im Joglo,7] \P— 102 JCol0,T)
ﬂnfql a'n'fQQ
- / / F(y + 2)m(dz) | m(dy)
Co{0,T]

Col0,7)
as desired. O

m(dz)

m

THEOREM 3. Let F : Cy[0,T] — C be as in Theorem 1 above. Fur-
thermore, assume that the analytic Feynman integral [, a"[g"T] F(z)m(dzx)
exists for all real ¢ # 0. Then (using the notation given in equation (2.5))
forall (A\,8) e C7. x Cy with A+ 3#0,

ang anx
f ( f Py + z)m(dy)) m(dz)
Ca [D,T] CD[O,T]

an g

(2.8) = ¥ F(z)m(dz)

Col0,T
/ans Fly+ z)m(dz)) m(dy).

an,
B LQIO’T] Co[0,T]

Proof. We first note that if A and 8 are in C4, then v = 28 and )""ﬁ

A+
are in C+ Thus, our assumption that the analytic Feynman mtegral
I an[{;‘q,] xz)m(dz) exists for all real ¢ # 0, implies that the integral
an AB

ICD[D 7 Flz)m(dz) exists for all (A, 8) € Cy x C7 with A+ 8 # 0.
But by Theorem 9 of [11] we see that for all (A, 3) € (0, 400) x (0, +00),

S (fcm 7 f)m(dy)) ()
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:LO[O’T]F( ,\_,e) m(de)

At

_ Y i) miay)
- fco[o,:r] (fcu[o,n F(\/X i \/B)m(d )) (%)

Thus equation (2.8) is valid for all (A, 8) € (0, +00) x (0, +00). Analytic
continuation yields equation (2.8) for all (A,8) € C4 x C,.

Finally, continuity (established in Lemma 1)} yields equation (2.8)
whenever A and/or 3 are elements of C, — C,. Recall that if both A
and G are in C7y — C,, we are assuming that A + 3 # 0. O

3. Applications

We first note that the hypotheses (and hence the conclusions) of The-
orems 1-3 in section 2 above are indeed satisfied by several large classes
of functionals. These classes of functionals include:

(a) The Banach algebra S defined by Cameron and Storvick in [3]: also
see [6,13].
(b) Various spaces of functionals of the form

T T
Flz) — f( /0 on (H)dz(t), ..., /D am(6)da(t))

for appropriate f as discussed in [7,12].
(c) Various spaces of functionals of the form

T
F(z) = exp] fo f(t,2(t))dz)

for appropriate f : [0,7] x R — C as discussed in [§].
(d) Various spaces of functionals of the form

T T
F(z) = exp{ f f F(5,, (), 2(8))dsdt)

for appropriate f : [0,7]? x R*> — C as discussed in [9].

Throughout this section it is assumed that the functional F:Cy[0, T} —
C satisfies the hypotheses of Theorem 3 above. We will state our results
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in terms of analytic Feynman integrals; similar results of course hold for

analytic Wiener integrals.
To obtain equation (3.1) below, we simply let A = 8 = —ig in Theo-
rem 3.

COROLLARY 1 (oF THEOREM 3). For all real g # 0,

an fq anfq an fyr2
(3.1) -/C'D[O,T] (f F(y + z)m(dy)) m(dz) = / F(z)m(dzx).

Col0,T] Co[0,T]
In fact for any positive integer n > 2,

/anfq /ﬂ"fq ]anfq Flyi+ - +ya)mldy) ... m{dyn-1)m{dyn)

0,77 JCo[0,7] Co]0,7]
anfqin
—/ F(zym(dz).
Co0,T]

COROLLARY 2 (OF THEOREM 3). Let ¢1,q2 and g3 be elements of
R—{0,} withqi+g2 # 0, q1+q3 # 0, g2+¢3 # 0 and q1g2+q193+qGags #
0. Then

(3.3)
anfyq anfy, anfq,
(L 2L ™ Pl -+ + midys)ymici) Y

Col0, T] Co[0,T] Co[0,7]

anfys onfiqraa)/ (a1 +az)
=L F(z + yo)m(dz))mi{dys)
Col[0,7T] Co[0,T]
anfig azes) /(a1 ata1ea+azas)
= [ F(z)m(dz).
Col0,T

REMARK 4. (i) Note that each of the iterated integrals in equation
(3.3) above can also be expressed in five other similar ways; for example,
all of the expressions in (3.3), also equal the expression

@ f(a0a5)/ (a3+aa) anfq,
/ f F(z 4+ y1)m{dy:) | m(dz).

Cu[0,T Cu[0,T)

(ii} Clearly there is an n-dimensional version of the above corollary.
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LEMMA 2. For all real ¢ # 0 and all a > 0,

anfaq anfq T
(3.4) f F(z)m(dz) = / F(Sz)m(da).

Col0,T] Col0,7] a

Proof. We first note that for all A > 0,
anwa /\_1/233
/ : F(z)m(dz) = / F( ym{dz)

Colo.T] color) Ve
[ P
= F{—)m(dz}.
Co[0,T] \/a
Equation (3.4} now follows by analytic continuation in A. X

THEOREM 4. For a,b € R and ¢1,q2 € R— {0} with 1% + 20 # 0,
anfo, anfy,
] / Flay + bz)m(dy) | m(dz)
Col0,7) \Jco[0,T)

() a3)/ (a1 ¥+ az0?)
:/ T F(z)m(dzx).
Col0,7]

(3.5)

Proof. If either @ = 0 or b = 0, the proof is immediate. Since for
Wiener integrals,

/ F(—z)m(dz) = / F(z)m(dz),
Cp[0,7T]

CO {GT]

we may assume that both a and b are positive. Then using Theorem 9 of
[11] and Lemma 2 above, we see that for all (A, 3) € (0, +o0) x (0, +00),

anwg anwy
/ f Flay + bz)m(dy) } m(dz)
Cul0,T] Col0,T]

_ ay bz »
B fcg[o,T] (/C{)[O.T] F(\/X * \/E)m(dy)) midz)

a? B2
B fco[o,T} i (V N Ex) i)

ARWes 3 /(Ab2+Pa2)
- f F(z)m(dz).
Co[0,T]
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Then equation (3.5) follows by analytic continuation in A and 3. O

We finish this paper by simply writing down some interesting special
cases of equations (3.1)-(3.5) above:

anfy/z anfq
(3.6) / " Pla)ym(dz) — f F(\az)m(da),

Col0,77] Col0,7]

anfaq anfq
(3.7) / Fla)m(de) = / F(a/V3)m(dz),

CO[OsT] Co[O,T]
anfq an fq + an fg

69 [ ([ P ) ) mee) = | Pem)
C()[O,T] CO[O,T] \/§ CO[U=T]

/arzfqz
Cp[0,T]

an fq, 2
A —)m(dy)) m(d2)

. an fig a3/ (g1 +292)
-/ Flo/VEmds).
Col0,7)
provided g + 2¢2 # 0.
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