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A TRANSLATION THEOREM FOR THE GENERALIZED
FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH
GAUSSIAN PROCESS ON FUNCTION SPACE

SEuNG JuN CHaNG', JAE GIL CHor*, AND AE Youna Ko

ABSTRACT. In this paper we define a generalized analytic Fourier—Feyn-
man transform associated with Gaussian process on the function space
Co.,[0,T]. We establish the existence of the generalized analytic Fourier—
Feynman transform for certain bounded functionals on C, [0,7]. We
then proceed to establish a translation theorem for the generalized trans-
form associated with Gaussian process.

1. Introduction

Let Cy[0,T] denote one-parameter Wiener space. The concept of the ana-
lytic Fourier-Feynman transform on Cy[0, 7], initiated by Brue [3], has been
developed in the literature. This transform and its properties are similar in
many respects to the ordinary Fourier function transform. For an elemen-
tary introduction to the analytic Fourier—Feynman transform, see [29] and the
references cited therein. Various kinds of the study for the analytic Fourier—
Feynman transform and related topics were developed on abstract Wiener space
[1, 2, 11, 12, 13, 25], space of abstract Wiener space valued continuous func-
tions on compact interval in R [8, 9, 10, 17, 18, 19], and the analogue of Wiener
space [20, 28].

Let D = [0,7] and let (2, F,P) be a probability space. A generalized
Brownian motion process (GBMP) on £2x D is a Gaussian process Y = {Y; }1ep
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such that Yy = 0 almost everywhere, and for any 0 < s <t < T,
Yy — Yy ~ N(a(t) — a(s), b(t) — b(s)),

where N (m, c?) denotes the normal distribution with mean m and variance o2,

a(t) is a continuous real-valued function on [0,7], and b(¢) is a monotonically
increasing continuous real-valued function on [0,7]. Thus, the GBMP Y is
determined by the functions a(t) and b(t). For more details, see [31, 32]. Note
that when a(t) = 0 and b(t) = ¢, the GBMP is a standard Brownian motion
(Wiener process).

In [14, 16], the authors defined the generalized analytic Feynman integral and
the generalized analytic Fourier—-Feynman transform (GFFT) on the function
space Cy [0, T, and studied their properties and related topics. The function
space Cy[0,T], induced by a GBMP, was introduced by Yeh in [31], and
was used extensively in [14, 15, 16, 21, 23]. There have also been several
recent attempts to construct financial mathematical theories using this process
[22, 24, 26].

In this paper, using the Gaussian processes Z defined on the function space
Cop[0,T] (see Section 4 below), we define a GFFT associated with the process
Z,(the Z;,-GFFT). We then establish the existence of the Z;-GFFT for certain
bounded functionals on C, 3[0,T]. We also proceed to establish a translation
theorem for the generalized transform.

The steps contained in establishing the results involving Z,-GFFTs are quite
complicated, because the GBMP and the Gaussian process Zj, used in this pa-
per are subject to drifts and are non-stationary in time. However, by choosing
a(t) = 0 and b(t) = t on [0,T], the function space C,[0,T] reduces to the
Wiener space Cy[0,T], and so the expected results on Cy[0,T] are immediate
corollaries of the results in this paper.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [14, 16, 21] that
we will need to establish our results in the next sections.

Let a(t) be an absolutely continuous real-valued function on [0,7] with
a(0) = 0 and a/(t) € L?[0,T], and let b(t) be a strictly increasing, continu-
ously differentiable real-valued function with 5(0) = 0 and ¥/(t) > 0 for each
t € [0,7]. The GBMP Y determined by a(t) and b(t) is a Gaussian process
with mean function a(t) and covariance function r(s,?) = min{b(s),b(t)}. By
[32, Theorem 14.2], the probability measure p induced by Y, taking a sepa-
rable version, is supported by C, 4[0,7] (which is equivalent to the Banach
space of continuous functions z on [0, 7] with z(0) = 0 under the sup norm).
Hence, (Cy[0,T], B(Cq 5[0, T]), 1) is the function space induced by Y where
B(Cy5[0,T]) is the Borel o-algebra of C, [0, T]. We then complete this func-
tion space to obtain (Cy [0, T], W(Cy [0, T]), ) where W(Cy 5[0, T]) is the set
of all Wiener measurable subsets of C, [0, T7.
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We note that the coordinate process defined by e;(z) = z(t) on Cy [0, T] %
[0, 7] is also the GBMP determined by a(t) and b(t). For more detailed studies
about this function space C, [0, T, see [14, 15, 16, 21, 31].

A subset B of C,[0,T] is said to be scale-invariant measurable provided
pB is W(C,, 5[0, T])-measurable for all p > 0, and a scale-invariant measurable
set N is said to be a scale-invariant null set provided u(pN) = 0 for all p > 0.
A property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e.). A functional F is said to be scale-invariant
measurable provided F is defined on a scale-invariant measurable set and F(p -)
is W(Cly, 5[0, T])-measurable for every p > 0. If two functionals F' and G defined
on Cy [0, T] are equal s-a.e., we write F ~ G.

Let Lib[(), T] be the space of functions on [0,7] which are Lebesgue mea-
surable and square integrable with respect to the Lebesgue-Stieltjes measures
on [0,T] induced by a(-) and b(+); i.e.,

L2,00.7] = {v : /OT v?(s)db(s) < +oc and /OT v2(s)dla|(s) < +oo},

where |a|(-) denotes the total variation function of a(-). Then L2 ,[0,T] is a
separable Hilbert space with inner product defined by

(1 0)ap 1= / w(t)o ()i () = / w(t)o(t)db(®) + Jal (1))

where my,|;, denotes the Lebesgue-Stieltjes measure induced by |a[(-) and b(-).
In particular, note that ||ullq,s = \/(u,u)ep = 0 if and only if u(f) = 0 a.e. on
[0,T7].

Let

wpl0,T] = {w € Copl0,T]: w(t) = /0 z(s)db(s) for some z € Lgﬁb[O,T]}.

For w € €', ,[0,T], with w(t) = [, z(s)db(s) for t € [0,T], let D : C%, ,[0,T] —
Li’b[(), T] be defined by the formula

(2.1) Duw(t) :== z(t) =

Then Cj, , = C, [0, 7] with inner product

T
(wl’w2)cfl,b :/0 Dwy (t) Dwa (t)db(t)

is a separable Hilbert space.

Note that the two separable Hilbert spaces L7 ,[0, 7] and C/, [0, T] are (topo-
logically) homeomorphic under the linear operator given by equation (2.1). The
inverse operator of D is given by

(D™12)(t) /0 z(s)db(s), te€]0,T].
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In this paper, in addition to the conditions put on a(t) above, we now add
the condition

(2.2) /0 1 (8) 2d]al () < +oc

from which it follows that

| 1patpape + ey = [

0

2

T gb(t) + Jal ()]

b'(t)

T
< M|l 2o + M? / la/(8) dlal(t) < +oo,
0

where M = sup,¢jory(1/b'(t)). Thus, the function a : [0,7] — R satisfies
the condition (2.2) if and only if a(-) is an element of C; ,[0,7]. Under the
condition (2.2), we observe that for each w € C7, [0, T] with Dw = 2,

(w,a)c,, = /O Duw(t) Da(t)db(t) = /O S(t)da(?).

For each w € Cy, [0, 7] and z € C, [0, T, we let

(w, x)™ ::/0 Duw(t)dx(t).

This integral is called the Paley-Wiener-Zygmund (PWZ) stochastic integral,
see [21]. Our definition of the PWZ stochastic integral is different than the
definition given in [14, 16, 23]. But we will emphasize that the following fun-
damental facts are still true:

(i) The PWZ stochastic integral (w, z)™ is defined for s-a.e. © € C, [0, T).

(ii) It follows from the definition of the PWZ stochastic integral and from
Parseval’s equality that if w € Cj ,[0,7] and = € Cj ,[0,T], then
(w, z)~ exists and we have (w,z)~ = (w’x)cé,b‘

(iii) If Dw = z € L2,[0,T] is of bounded variation on [0,7], then the
PWZ stochastic integral (w,z)™ equals the Riemann-Stieltjes integral
fOT z(t)dz(t) for p-a.e. x € Cyp[0,T].

(iv) The PWZ stochastic integral has the expected linearity properties.
That is, for any real number ¢, w € C;7b[0,T] and z € Cy[0,T],
we have

(w,cx)™ = c(w, )™ = (cw,z)™.
(v) For each w € C ,[0,T], (w,x)~ is a Gaussian random variable with
mean (w,a)cr , and variance HU}HQQb' For all wi,ws € C ,[0,T], we

have

/ (wn, 2)™ (s, 7)™~ dpu(x) = (wr, wa)er . + (wr,a)er . (wa,a)cr
Ca,u[0,T] ’ ’ ’
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Thus, if {w1,...,w,} is an orthogonal set in C7, [0, 7], then the Gauss-
ian random variables (w;, x)~’s are independent.

From the assertion (v) above, we obtain the very important integration
formula on the function space Cq [0,T]. Let {wy,...,wy} be an orthogonal
set of functions in (Cj ,[0,T], [ - |lc; ,), and let f : R* — C be a Lebesgue
measurable function. Then ’

[ (e ) ) duto)
Cq p[0,T]

n —n/2
23) - (j]]l%nwﬂa,b) [ s

" (uj = (wj,a)cr |
xexp{—z ! ! a0 }dul...dun

2w 1%,
a,

j=1
in the sense that if either side of equation (2.3) exists, both sides exist and
equality holds.

Throughout this paper, let C, C, and @Jr denote the set of complex numbers,
complex numbers with positive real part, and nonzero complex numbers with
nonnegative real part, respectively. Furthermore, for each A € C, \'/2 denotes
the principal square root of X, i.e., A\'/2 is always chosen to have nonnegative
real part, so that A=1/2 = (A\1/2)=1 is in C,. for all A € C,. Then we have the
following: for A € C with A = a + /3,

— _ — Va?+p24a .. [\ a?2+p%2—a
(24) A 1/2 = ()\1/2) L= W — zsngn(ﬂ) W,

where sign(f8) =1 if 8 > 0 and sign(f) = -1 if 5 < 0.
The following integration formula is used several times in this paper:

(2.5) /Rexp{—auQJrﬂu}du: \/gexp{%}

for complex numbers « and 3 with Re(a) > 0.

3. Gaussian process and the commutative algebra (C; ,[0,T], ®)

For each t € [0, T, let x[o,4 denote the characteristic function of the interval
0,] and for k € C;, [0, 7] with Dk = h and with [|k[}2, = i h2(t)db(t) > 0,
let Zj(z,t) be the PWZ stochastic integral
(31) Zk(zat) = (D_l(hX[O,t]>az)N'

Let i (t) := fot h(u)da(u) and let By (t) := fot h2(u)db(u). Then the stochastic
process 2y, : Cq3[0,T] % [0,T] — R is a Gaussian process with mean function

/ 2y, )du(z) = / (u)da(u) = (1)
Ca,b[O,T] 0
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and covariance function

/c 011 (Z5(5) — 1(8)) (2 (t) — (1)) dp()

min{s,t}
_ /O h2(u)db(u) = Bx (min{s, t}).

In addition, by [32, Theorem 21.1], Z(-, 1) is stochastically continuous in ¢ on
[0,T]. If h = Dk is of bounded variation on [0, T], then, for all x € C, [0, T],
Zi(z,t) is continuous in ¢. Of course if k(t) = b(t), then Zy(z,t) = z(t).
Furthermore, if a(t) = 0 and b(¢) = t on [0, T}, then the function space C, [0, T]
reduces to the classical Wiener space Cy[0,7] and the Gaussian process (3.1)
with k(¢) =t is an ordinary Wiener process.

Let C [0, T be the set of functions k in C}, [0, T'] such that Dk is continuous
except for a finite number of finite jump discontinuities and is of bounded
variation on [0, T]. For any w € C} ,[0,T] and k € C} [0, T, let the operation
© between C; ,[0,7] and C; ,[0,T] be defined by

w® k:= D~ (DwDEk), ie., D(w®k) = DwDk,

where DwDFk denotes the pointwise multiplication of the functions Dw and
Dk. Then we observe the following algebraic structures:

. C;7b[0,T] X C’;AO,T] S(wk)—woke Cl;,b[O,T].
e For every w € C ,[0,T] and every ki, k2 € C;; ,[0,77,

(wO k1) ©ky =w0O (k1 © ko)
and
woO (k1 + k) =wO ks +w O ka.
e Tor every wi,ws € C [0, T] and every k € C; [0, 7],
(w1 +w2) Ok =w; Ok + wy O k.
e For every wi,ws € C}, 1[0, T] and every k € C; [0, 7],
(w1, w2 ® k)cé,b = (w1 Ok, UJQ)C';’b.

We also observe that for w € Cy ,[0,7] and k € C;; [0, T,

v kle;, = (wokwo R,

1/2

(3.2) - {/OT{Dw(t)}Q{Dk(t)}de(t)}

T 1/2
< | Dk| [ / {Dw(t)}%(t)}
— DMl

where || - ||oo denotes the essential supremum norm.
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Remark 3.1. (C} ,[0,7],®) is a commutative algebra with the identity b(-).
For w € € ,[0,T] and k € C;; ,[0, 77, it follows that

(w, Zg(x /Dw (/Dk: )dx(s )

(3.3)
:/ Duw(t)Dk(t)dz(t) = (w © k, )™

for s-a.e © € Cyp[0,T]. Thus, throughout the remainder of this paper, we
require k£ to be in C;’b[O,T] for each process Zj. This will ensure that the
Lebesgue-Stieltjes integrals

T
lwo ki, = [ (Du)? DK P,
and

(wok,a) / Dw(t)Dk(t)Da(t)db(t) / Dw(t)Dk(t)da(t)
will exist for all w € Cy, ,[0,T] and k € C; [0, 7.

4. Generalized analytic Fourier—Feynman transform
associated with Gaussian process

We define the Zi-function space integral (namely, the function space integral
associated with the Gaussian process Z) for functionals F on C, [0, 7] as the
formula

WP = BalFEG )] = [ F(E)duta)
@ b[O T]
whenever the integral exists.

Definition 4.1. Let Zj, be the Gaussian process given by (3.1) and let F' be
a C-valued scale-invariant measurable functional on Cq [0, T] such that

Jr(Z1;N) i= I [FNY2 23 (2, )]

exists and is finite for all A > 0. Let A be a domain in C4 such that (0, +c0)NA
is an open interval of positive real numbers. If there exists a function J5(Zx; A)
analytic on A such that Jj:(Zk;A) = Jp(Z2k; A) for all A € (0,+00) N A, then
J5(Zk; A) is defined to be the analytic Zi-function space integral (namely, the
analytic function space integral associated with the Gaussian process Z) of F
over Cy [0, T] with parameter A, and for A € A we write

any
(4.1) LMF) = L) F(Z(x, )] = / F(Zi(z,-))dp(z) :== Jp(Zi; N).
Cap[0,T]
Let ¢ be a nonzero real number and let I'; be a connected neighborhood of
—iq in C4 such that (0, +00) NI, is an open interval of positive real numbers.
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Let F' be a measurable functional whose analytic Zj-function space integral
exists for all A in Int(T'y), the interior of I'y in C. If the following limit exists,
we call it the generalized analytic Z;-Feynman integral (namely, the generalized
analytic Feynman integral associated with the process Z) of F with parameter
q and we write

(4.2) M F) = Y [F(2k(, ) == lim I [F(Z5(z, ),

A——iq

where A approaches —iq through values in Int(T',).
Next we state the definition of the Z;-GFFT on function space.

Definition 4.2. Let Zj, be the Gaussian process given by (3.1) and let F' be
a scale-invariant measurable functional on Cy 5[0,7]. Let ¢ be a nonzero real
number, and let I'; be a connected neighborhood of —ig in ((~3+ such that for
all A\ € Int(T',) and y € Cy[0,T], the following analytic Zi-function space
integral
Taw(F)(y) i= L2 [Fy + Zi(z, )]

exists. For p € (1,2], we define the L, analytic Z;-GFFT (namely, the GFFT
associated with the process Z), Tq(ﬁc) (F) of F, by the formula,

T,](TQ(F)(Z/) = Lim. T,\,k(F)(y)

A——iq
AEInt(Ty)
if it exists; i.e., for each p > 0,
| lim [Tk (F) (o) = TR (E)py)[” duly) = 0,
- Ca,5[0,T]
AeInt(Ty)

where 1/p+ 1/p’ = 1. We define the Ly analytic Z,-GFFT, Tq(ylk) (F) of F, by
the formula
. anf,
(43) TR = lim T(F)y) = L5 Fy + 2, )
A€Int(Ty)

if it exists.

We note that for 1 < p < 2, Tq(ﬁc) (F) is defined only s-a.e.. We also note that
if Tq(i)(F) exists and if F ~ G, then Tq(i)(G) exists and Tq(i)(G) R~ Tq(ﬁg (F).
Moreover, from equations (4.1), (4.2) and (4.3), we have

anf, __ ganf, 1

(44) L F) = L [F(Ze(, )] = T (F)(0)
if both side exist.
Remark 4.3. Note that if & = b on [0,7T], then the generalized analytic Z;-
Feynman integral, I;qu [F], and the L, analytic Z,-GFFT, Tq(?b)(F), agree with

the previous definitions of the generalized analytic Feynman integral and the
L,, analytic GFFT respectively [14, 16].
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5. Bounded cylinder functionals

A functional F is called a cylinder functional on C, [0, 7] if there exists a
finite subset {w,...,wn} of C; ,[0,T] such that
(5.1) F(z) = ¢((wr,2)™, ..., (wm,x)™), @€ Cupl0,T],
where ¢ is a C-valued Lebesgue measurable function on R™. It is easy to show
that for given cylinder functional F' of the form (5.1) there exists an orthogonal
set {e1,...,en} of functions in C, [0, 77\ {0} such that F" is expressed as
(5.2) F(x) = f((e1,2)™, ..., (en,x)~), x€ Cyupl0,T],

where f is a C-valued Lebesgue measurable function on R™. Thus we lose no
generality in assuming that every cylinder functional on C, [0, T is of the form
(5.2).

For k € Cy [0, T] with [|k|lc; , > 0, let Zj; be the Gaussian process given by
(3.1) above and let F' be given by equation (5.2). Then by equation (3.3),

F(Zk(xv )) = f((elv Zk(za '))Nv SR (ena Zk(xv ))N)
=fle1 Ok, 2)~,...,(en ©@k,z)™).
Even though the subset A = {e1,...,e,} of C}, 1[0, 7] is orthogonal, the subset
ACk={e0k:ec A}
of €y ,[0,T] need not be orthogonal.

Given an orthogonal set A = {e1,...,e,} of functions in C; ,[0, 7]\ {0}, let
O*(A) be the class of all nonzero elements k € C} [0, 7] such that A® k is
orthogonal in Cj, ,[0,7]. Since dim C7, [0, T] = oo, infinitely many elements &k
exist in O*(A).

Example 5.1. For every p € R\ {0}, pb(-) is an element of O*(A) for any
orthogonal set A in C} ,[0,T].
Example 5.2. Given any orthogonal set A = {e,...,e,} of functions in
C}, 410, T, each of whose elements is in C;; ,[0, 77\ {0}, let L(S) be the subspace
of €y, ,[0,T] which is spanned by S = {e; ©e; : 1 <i < j <n}, and let L(S)*
be the orthogonal complement of L(S). Let

P(A) :={k € C;,[0,T] : k© k € L(S)" and |[k[|c: , > 0}.

Since dim L(S) is finite, and Cj ,[0,77] is dense in C7 [0, 77, dim(L(S)* N
5[0, T]) = oo and so P*(A) has infinitely many elements.
Let k be an element of P*(A). It is easy to show that [le; ® kllc, > 0
for all j € {1,...,n}. From the definition of the P*(A), we see that for 4, €
{1,...,n} with ¢ # j,

T
(e; Ok, e; O k)cr, = /0 De;(t)De;(t)(Dk)?(t)db(t)

= (61' ®€j’k®k)0;,b =0.
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From these, we see that A ® k is an orthogonal set in Cj, [0,77] for any k in
P*(A), ie., P*(A) C O*(A).

We clearly observe that for orthogonal sets A; and Az in Cj ,[0,7] with
Al C AQ, O*(Ag) C O*(.Al)

Let M(R™) denote the space of C-valued Borel measures on B(R™). It is well
known that a C-valued Borel measure v necessarily has a finite total variation
lv]], and M(RR™) is a Banach algebra under the norm || - || and with convolution
as multiplication.

For v € M(R™), the Fourier transform v of v is a C-valued function defined
on R™ by the formula

(5.3) D(@) = /]R exp {iilujvj}du(ﬁ),

where @ = (u1,...,u,) and ¥ = (v1,...,v,) are in R™.
Let A = {e1,...,e,} be an orthogonal set of functions in Cy ,[0,77\ {0}.
Define the functional F' : C, [0,T] — C by

(5.4) F(z)=v((e1,2)~,...,(en,x)™), x € Cyupl0,T],

for s-a.e. x € Cy[0,T], where ¥ is the Fourier transform of v in M(R™). Then
F is a bounded cylinder functional because |v(@)| < ||v|| < 4o0.

Given an orthogonal subset A = {e1,...,e,} of C} ,[0,7]\ {0}, let T4 be
the space of all functionals F' on C, [0, having the form (5.4). Note that

Fegl 4 implies that F' is scale-invariant measurable on C, [0, 7T]. Throughout
the rest of this paper, we fix the orthogonal set A.

Lemma 5.3. Let A= {e1,...,e,} be an orthogonal subset of C}, ,[0,T]\ {0}.
Then, for every k € O*(A) and all { € C4, the function space integral

K=l {exp {,'g zn:(ej, Z(, -))Nw}]

j=1

exists and is given by the formula

4.2 n ' n
(5.5) K =exp { ) Z lle; © kHQC(;va? +i¢ Z(ej ©k,a)cr vj -
j=1

j=1

Proof. Using (3.3), (2.3), Fubini’s theorem, and (2.5), it follows immediately
that equation (5.5) holds for all ¢ € C,.. O

For notational convenience we use the following notation throughout this
paper:
(5.6)
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= We(\ k; 0) = exp{ 2 Z lle; © k||C/ v +iAT 1/22 e; Ok, a)C/ vj}
J=1
for an orthogonal subset A = {e1, ..., e, } of C7 [0, T]\{0},k € O*(A), A € C,
and 7= (v1,...,v,) € R™
In next theorem, we establish the existence of the analytic Zk—fungtion space
integral Ty x(F')(y) = I} [F'(y + Zx(x,))] of the functionals I in T 4.

Theorem 5.4. Let F € ‘EA be given by equation (5.4) and let k be an element
of O*(A). Then for all A € C, Ty ,(F) exists and is given by the formula

n

61 D)W= [ e {iz<ej,y>~vj}wg<A, ks 0)du(©)

j=1
for s-a.e. y € Cyp[0,T], where Wg(A, k;T) is given by equation (5.6) above.

Proof. By (5.4), (5.3), Fubini’s theorem, (5.5) with ¢ replaced with A='/2, and
(5.6), we have that for all A > 0 and s-a.e. y € Cq [0, 77,

T+ (Zr; A) = I [F(y + AV2Z (2, )]

n

= / exp {z > (e, y)ij}Wg()\, k; 0)dv (7).

j=1
Now let
Tityi(Zii \) = / exp{’iZ(ej,y)N’Uj}Wg()\, ke ) ()
. 2

for A € Cy. Then Jp(, ) (Zk;A) = Jrpy+)(Zk; A) for all A > 0. We will use
the Morera theorem to show that JF( ‘. )(Zk; A) is analytic on C as a function

of \. Let {\}2, be a sequence in Cy such that A\; — A. Then )\_1/2 A1/2
and Re(\;) > 0 for all I € N. Thus it follows that for each [ € N,

exp {iZ(ej,y)ij}Wé()\l, k; v)
J=1
= [Wa(\ k-ﬂ)\

= exp{ ™ ZHe]@kHC/ v +iX, 1/2 Zq@k a)C/ vj}

J=1

Re( A =
exp{ 2|)\|2 ZH]@kHC/ v —Im(A / ZeJQkaC/ v]}
j=1

n \/WII% Okller, [N @ kia)er 12
= expq — Z \ “vj + ’
= |Ai] v/ Re( )\Z)Hej(DkHC;’b

N | —
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n Py )2 (e © kz)c}

+ 9 2
2 = Re(N\;) Hej © k| n
—1/2 n ; 2
o { NP mOy )2 G (6 © ’f’a>c:l,,,}
= QRG()\Z) = ||€j © kHQC;,b .

Since v € M(R"™), we see that

JRESCLTRC L R

A2 (Im(A )2 & (ej®ka)a B
[ o { AR Z HeJQkHQI o

j=1

IN

o { AP Im( )2 O (e Ok 0y,

lv|| < +o0
3Re(\) Hej@kzna,b }

j=1

for each [ € N. Furthermore we have that
—-1/2 n . 2

y MmOy )2 Gs (@ Ok Y

im exp 5 d|v|(V)

I—o0 Jpn 2Re(N\;) = ||€j © /CHCZI ,

2
. INJ2(Im(A 2))2 s (6 O ksa)ey |
= 1 d R"

Jim exp { PECREL S oo, R
= a,b

—00
n . 2
e [PPAmO 2 (GO e Y
2Re(\) = lle; ® k|2, \
n ka)Ql
PRImA 22 S (G Ok
_  bd
[ e {PEERE z RS G
a,b

Thus, by Theorem 4.17 in [27, p. 92], J} (Zk; A) is continuous on C.. Since

F(y+)

n

g(A) = exp {Z > (e y)ij}Wg()\, k; )

J=1

is analytic on C4, applying Fubini’s theorem, we have

/JF(er (Zi; N)dA = /n/ A)dAdv(0) =0

for all rectifiable simple closed curve A lying in C;. Thus by the Morera
theorem, J7 Fly+ )(Zk;)\) is analytic on C;. Therefore the analytic function
space integral

i) (B A) = INE(y + Zi(x, )] = Tok(F)(y)
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exists on Cy and is given by equation (5.7) for all A € Cy. O

6. Zi-generalized Fourier—-Feynman transforms
of bounded cylinder functionals

The following observation will be very useful in the development of our
results for the Z,-GFFT of functionals F' in T A-

If a(t) = 0 on [0, 7], then for all functionals F' given by equation (5.4), the
Ly analytic Zp-GFFT Tq(,lk) (F) will always exist for all real ¢ # 0 and be given
by the formula

j=1
= / exp {z Z(ej, Y)~v; — 2 Z lle; © kH%{; bv?}du({)').
" j=1 j=1 '

However for a(t) as in Section 2, and proceeding formally using equations (5.4)
and (5.7), we see that Tq(lk)(F)(y) will be given by equation (6.5) below if it
exists. But the integral on the right-hand side of (6.5) might not exist if the
real part of

LogWa(—iq,k;U)={——Zleg@flc’ vi +i(—ig)” 1/22(€j®k,a)c(;,bvj}

j=1 j=1

is positive. However, by the Cauchy-Schwartz inequality and (3.2),

lalle: Dkl &
|Wg(—iq,k;ﬁ)|§exp{ 2T S e |vj|},
Vi &l

and so the L, analytic Z,-GFFT Tq(l)(F ) of F" will certainly exist provided the
associated measure v of F' satisfies the condition

ol IDHl
00 [ o (B S el bl ) <420

Note that in case a(t) = 0 and b(¢) = t on [0, T, the function space Cy [0, T
reduces to the classical Wiener space Cy[0,T] and (e; @ k, a)c(; , = 0 for all

j=1,...,n. Hence for all)\E@+,

1 n
e { = 55 S lesonll, 2|

j=1

—ew{ - 33 ZH @Ry, <1

‘Wé()‘ak;ﬁ)’ =
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Given a positive real number gqg, let
(6.2) Tgo = {A € Cy 1 [Im(A™/?)] < (20) 7"/}
and let T,y ={N € C4 ¢ |A| > qo}. Then we can observe the following:

(i) The set I'y, is an unbounded open set in ((~Lr, the topological subspace
of C.
(ii) For any real g with |g| > qo, —ig¢ is an element of I'y,. In fact, we have
the equality (—iq)~'/2 = 1/./2]q| + isign(q)/+/2|q| by equation (2.4).
(iii) For any real ¢ with |g| > qo, I'y, is a connected neighborhood of —iq
in Cy4 so that (0,400) C I'y,. More precisely, we observe —ig € Tg, C
Ty,
(iv) For all A € T'y,, we have the inequality

B la IICM Hoo
(6.3) [Wa(\, k; 7)| < exp { Z lejllc:, blvgl}

Given a positive real ¢o and an element k € O*(A), we define a subclass
%qo Fof T4 by F' € ‘Eq“ ¥ if and only if the associated measure v of F by (5.3)
satlsﬁes the condition (6 1) with ¢ replaced w1th Q-

We will emphasize the fact that ﬂq>03 A is not empty.

Given 1 = (m1,...,myn) € R" and 02 = (02,...,02) € R" with of >0,
J=1,...,nlet v_ - be the Gaussian measure defined by
(64) v, »(B)= (H 2770]2-) / exp{ Z }dv B e B(R").
j=1 Jj=1

. 1 n ' n
Vo2 () = exp{ ~3 Zaf—u? + zijuj}.
j=1 j=1

Using equation (6.4), Fubini’s theorem and equation (2.5), we see that for
any nonzero real g,

laller Dkl &
/exp{ : S Jesler |vg|}d| NG
. NG ol f W

Jj=
n

1
m2
2y—1/2
= H {(27mj) / exp{—f‘g}
j=1 j
0 vy m;  llalle; , IDEllsllejlle:
X ex = +(—]— = ”’b)v}dv»
ol (5 N g

9.2
J

2
m]

9 1/2 R
+ (2m07)” exp{ 20]2}
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) /+ooe ) { 2 +<mj+||a||c;,b|Dk||oo|ej||c;,b> }d }
Xpy — =5 — v pdv;
0 AN V124] Y

e ( 2 o ||a||c;,b|Dk||m|ej||c;,b> L

Xp4 — =5 — — vj pdv;

—o o \oj V124l A
m3
9me2)—1/2 My
+ (270%) exp 207

. /+ooe ) { 02 +<mj+||a||c;,b|Dk||oo|ejnc;,b) }d }
X - —5 — ’Uj ’Uj
oo 207 \ o} V24|

Theorem 6.1. Given qo > 0 and k € O*(A), let F be an element of ‘fj“’k.
Then for all real q with |q| > qo, the L1 analytic Z,-GFFT of F, Tq(ylk) (F) exists
and is given by the formula

< + o0.

n

(6.5) TR = /n exp {iZ(ejay)NUj}Wa(—iq, k; 0)dv (D)

j=1
for s-a.e. y € Cyp[0,T], where Wz(—iq, k; V) is given by equation (5.6).

Proof. Let T'y, be given by equation (6.2). It was shown in the proof of The-
orem 5.4 that Th ,(F)(y) is an analytic function of A throughout C,. Thus,
Tq(,lk) (F)(y) is analytic on the domain Ty, .

Let {\}°, be any sequence in C; which converges to —ig through C,.
Then, clearly, Wz(\;, k;¥) converges to Wa(—iq, k;¥). By Theorem 5.4, we
know that the integral

T al)) = [ exp {3 (er,0) s [Wathu ks )av()

j=1

exists for all | € N. Since |Arg()\l_1/2)| < 7/4 for every | € N and )\l_l/Q =

Re(\, /?) +ilm(), /%) = (—iq)=Y/2 = 1/\/]2q] + isign(q)/\/]2q], we sce that
Re()\l_l/Q) > |Im()\l_1/2)| for every [ € N, and so there exists a sufficiently large
L € N such that |Im()\l_1/2)| < 1/4/12qo|, i-e., \i € Ty, for every I > L. Thus
for each [ > L,

|W€()\la k7 17)|

exp{ = 5 (IR /) = [y /)2
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1/2 —-1/2
+iRe(A V) Im(); /))ZHGJ-@kH%;,bU?
j=1

(Re(A %) 4 ilm (A, 1/2)) i(ej Ok, a)C;,bij

=1
Sexp{lm UQZeJG)kaC/ v]}
Jj=1
gexp{‘lm 1/2‘Z|6]®kzacf UJ‘}
Jj=1
laller , 1Dkl &
< e {2 el il
2] le 3 b

and so, by condition (6.1) with ¢ replaced with go,

TsPI0)| < [ ek 9l

</ nexp{”“”c'm_ R S o b

j=1

Il |0kl )
< [ { T X llesle, o3 b @) <+

Also, by condition (6.1) with ¢ replaced Wlth qo, we have

‘/ neXp{ (€5,9)" “j}We*(—iqa’f;ﬁ)dV(U)

</ 1w6~<—z'q,k;ﬁ>1d|u|<ﬁ>

Jolly, 1Dkl
< [ e {FEEEE S ey o bl 9) < o

j=1

Therefore the equation (6.5) follows from (4.3), (5.7) and the dominated con-

vergence theorem.

The following corollary follows from equations (4.4) and (6.5).

Corollary 6.2. Let qo, k, and F be as in Theorem 6.1. Then for all real g with
lg| > qo, the generalized analytic Zj-Feynman integral of F, Iamf 1[F) exists and

is given by the formula

MR = | Wel—ia, s D)u(),

where Wz(—igq, k; U) is given by equation (5.6).
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Theorem 6.3. Let qo, k, and F be as in Theorem 6.1. Then for all p € (1, 2]
and all real g with |q| > qo, the L, analytic Z,-GFFT of F, Tq(i) (F) exists and
is given by the right hand side of equation (6.5).

Proof. It was shown in the proof of Theorem 5.4 that T ,(F)(y) given by
equation (5.7) is an analytic function of A throughout C,. In view of the
definition of the L, analytic Z,-GFFT, it suffices to show that for each p > 0,

Jim T3 (F)(py) = T,5 (F) pw)|” daly) = 0.
Ner 9/ Canl0,T]
0

Fixing p € (1,2] and using inequalities (6.3) and (6.1) with ¢ replaced with
qo respectively, we obtain that for all p > 0 and all A € I,

T34 (F) (o) — T (F) (ow)|”

</ o {ip;(ej’ y)NH{m(A’ ki 0)] + [We(—ig, k;6>|}dy(17)>p

lalle , I1Dklloo & v
(2/ exp{—“‘b# > IIejICfblva}dIVI(ﬁ)) < oo
n 2(]0 iz ’

1

’

IN

IN

Hence by the dominated convergence theorem, we see that for all p € (1, 2] and
all p > 0,

Jim T3k (F) py) = Ty (F)py)[” da(y)
M JC, ,[0,T)

AETq,
n
/ exp {ip > (e, y)N}
Rn =

/

p
x tim {Wel\ I 8) = Wel—ig, ks ) }du(@)| du(y)
Nelp
=0
and the theorem is established. O

Remark 6.4. Let qo, k, and F' be as in Theorem 6.1. For a real number ¢ with
lg| > qo, define a set function v, : B(R") — C by

vor(B) = /B We(—iq, ki w)dv(w), B € B(R"),

where v and F' are related by equation (5.4). Then it is obvious that vy
belongs to M(R™). In this case, by Theorems 6.1 and 6.3, and equation (6.5),

we see that for all p € [1,2], the L, analytic Z,-GFFT of F, Tq(ﬁc)(F), can be
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expressed as

TH(F)(y) = / exp{ziej, j}duqyk(a)

j=1
for s-a.e. y € Cy [0, T]. Hence Tq(ﬁg (F) belongs to T

7. Translation theorem

It is well known that there is no quasi-invariant measure on infinite dimen-
sional linear spaces (see for instance [30]). Thus, there is no quasi-invariant
probability measure on the function space (Cy 5[0, 7], W(C45[0,T1]), ). Based
on such circumstance, numerous constructions and applications of the transla-
tion theorem (Cameron-Martin theorem) for integrals on infinite-dimensional
spaces have been studied in various research fields in Mathematics and Physics.
The most of the results in the literature are concentrated on Wiener space.

Cameron-Martin translation theorem on classical Wiener space was intro-
duced in [4, 5]. On the other hand, Cameron and Storvick [6, 7] presented
a translation theorem for the analytic Feynman integral of functionals on the
Wiener space Cy[0,T] and Chang and Chung [15] derived a translation theorem
for function space integral of functionals on C, [0, T]. In this section, we will
present a Zp-GFFT version of the translation theorem for functionals in T A-

Given go > 0 and k € O*(A), let F be an element of ‘Iq“’ , and for 0 €

[0, T] and g € R\ {0}, let

(7.1) F9(z) := F(x) exp{—iq(h,z)~}.
Also, given the orthogonal set A = {e1,...,e,} and 0 € C7, [0, T7, let

gi =¢i/llejller,,  F=1...,n,
0,95)c: j=1,....,n
TR, —SCa . i—ntl,
1 n
In+1 = gn+1(0) = {9 - chgj]7 if ¢f,) #0,
Cn+l j=1
and e,y1 = cflﬂgn“. Then AU {en11} = {e1,...,en,ent1} is an orthogonal
set in Cy, ,[0, 7] and we obtain
n+1 n+1
9
6=2 o= E:
2 el

For the complex measure v associated with F by (5.4), let 1/ 2o be the
translation measure of v defined by

Vheo(B) i=v(B+ (acl/lerlles, - ach/lleallcy,))
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for B € B(R™), and let d_, be the Dirac measure concentrated at —¢ in R.
Then it follows that

F99(z)
n n+1
:/ exp{zz €5, T —iq{Zﬁ(gj,x)N]}dV(ﬁ)
Rn j=1 j=1
- gc] 0
= expi ej, )~ |vj — | —iqcy11(gn 1,$)N}dV(U)
/Rn { 2 ’ { ||ej||c;,j e
:/ eXp{ZZ €5, T j iq(en-‘rla ) }dyq(?Q()
R™ j=1
= / exp {ZZ €j, T ‘}[/GXP {i(€n+1,$)~7n+1}d5—q(7“n+1)} dv} 7 6(7)
R R
Jj=1
exp {ZZ ej,x)~r; + i(en+1,x)~rn+1}d(yé7ag X 0_g)(T)
n+1
Jj=1

= (V;éﬁ x4 q ((615 ) 7"'a(en7x)Na(en+17$)N)'

One can easily see that v ., x d_4 is an element of M(R"*'). Thus

(v} 9 X 6—4) belongs to M\(R”‘H), the space of Fourier transforms of mea-
sures from M(R"*1), and so the functional F'9 given by (7.1) is an element
of T 4U{e,.1}- Furthermore, for any real g with |g| > go, F'? is an element of

T 0,k
‘IAU{en,+1}’ because

n+1

e, 1K ]
fone T Stz o 5.9

/ ||a||c;l,,,||leHoo|| o Traenl Yoo (ren)
ex ————||€n Ty —q(Tn
. P V2% +1licy , 1Tn+1 q\Tn+1

lalle; 11Dkl oo
x/ exp{ \/b— Z||€J|Céb|rJ|}d’ q,69’

lalllallc: , I1DE[|
Xp \/% ||€n+1||C(’lb

lallc, ||D oo &
/ exp{ ZH%HC
RTL
|q|||a||c |Dk:|\oon+1
xp{ ZM}

}d|u|< g

Y esler, JH
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lalle: ||D oo & )
< exp{ ZHG;HC/ |vj|}d|u|<r>

< + 0.

If k is an element of O* (AU {e,+1}), one can evaluate the L, analytic Zj-
GFFT, Tq(ﬁc)(qu), of the functional F% given by (7.1) in view of Theorems 6.1
and 6.3. But we cannot ensure that k € O*(A) implies k € O*(AU {e,41}),
because O* (AU {e,41}) C O*(A).

The functional F'9 given by (7.1) plays an important role in our translation
theorems for the analytic Z,-Feynman integral and the analytic Z,-GFFT of
functionals in T A-

Theorem 7.1. Let qg, k, and F be as in Theorem 6.1. Let Dk = h, and given
0 € C7, [0, T with DO = ¢, let xg € C, ,[0,T7] be given by

(7.2) zo(t) = /O h(s)e(s)db(s) = (k © 0)(t).

Then for all real q with |q| > qo, the generalized analytic Zj-Feynman integral
I,jnfq [F qe] exists. Furthermore, we have the following equality:

I,jf;f" [F(Zk(z,-) + Zx(20,-))]
T3 (F)(Zk(x0,-)

iq : anf,
exp {5|9 OklE, , — (=ig) 2O © k,a)cy, }IZI [F9( 2, (z, )],

(7.3)

where F9° is given by equation (7.1) above.

The following lemma will be very useful in the proof of Theorem 7.1. By
Parseval’s relation, one can obtain equations (7.4), (7.5) and (7.6) below.

Lemma 7.2. Given an orthogonal set A = {e1,...,en} in C; ,[0,T], k €
O*(A), and 0 € C}, ,]0,T], let

9®k 00k 00k
n+1 - Cn+1gn+1a

where
ng-li = HGGI{HQ(IM _Z(QQk’gf)QC;,b’
j=1
1
0
Ingi = EEn [9616 Z @Ok, gf)cr g]},
n+1 j=1

and where g¥ = e; © k/|le; © kllo: , for j=1,...,n. Then

{el®k,...,en®kz,efﬁ_’i
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is an orthogonal set. In this case, one can see that

n (9®l€,€j Qk)C(’l

(7.4) 0ok=>

b 00k
ej Ok + e,

= e Okl
. _
0Ok, e; ©k)Z,
2 _ a,b 00k |12
(7.5)  0CKE, 521 CorE el
J= a,b

and

~ (9®kaej®k)6” (9®l€,a)cl
76 9 @ k/’, a ’ = a,b a,b
(7.6) (BOka)c, = fer S HIE,

j=1

00Ok
(en-G‘,-l’ a)c:z,b'

Proof of Theorem 7.1. Using (7.1), (5.4), (3.3), Fubini’s theorem, (7.4), (2.3),
(2.5), (5.6), (7.5), and (7.6), it follows that for A > 0,

(7.7)
Jpae (Zk; )\)

= / FO\Y22Z (2, ) exp{—igh\™"2(0, Z¢(x, )™ Ydu(z)
Ca,5[0,T]

= exp L iIATY2N (e @ k)™ v;
/Ca,b[O,T] |:/]R" { Z ! !

j=1

" (0O ke; ©k)c ~
_iq)\—l/2(z . ]k e @k—l—efﬁ’f,x) }du({)’)] du(x)
= le; © k| .
= exp L iIATY2N (e @ k)™ v;
/" |:/Ca,b[0,T] { Z ! !

j=1
" (0O ke ©k)c
—iq)\_l/Q a,b (€‘®k,.’I])N
2o or @

A 0 faute) | av(d

—1/2
- /IR [(%ﬂefﬁ’ill%@,b) /IR exp{—z‘qr“%o

2
o~ (2t oer ]y,

00k
20 A I,

n+1
- 2 —1/2 Sy —1/2
X H (27TH€j ©) kHCQ,b) Rexp I Pojuy

j=1
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—1/2

2
0Ok e ©k)or u; — (e; ©k,a)c
( Ok, [u; — (e )or ] }duj]du(ﬁ)

—igA Uj —
lej O kI, 2lle; © Klig, |
00k 00k
I £ N - o R o
= exp f —uq + 00k (12 - 9 00k |2
Hen+1Hcgyb HenH”Céyb

n € @k/’ ’ P ’
/[H {IJ &, [Ml/%jZ_qu/Q(e@k:,eJ@kz)cab

fes O AT,
0 k 2 9®k,a 2/
( Ok a), —( )C“'b dv (D)
e orE, | 2l ok,
= ex (_iq)2H 6®k||2 +(_- ))\—1/2( 00k )
- xp 2\ n+1 Cow tq Ent1,4)C
x/ exp{ \ Zer%@kC’ vj
n ‘7:1
1 n o n
BN > e o kHQc;,b%Q‘ +iIAT2Y (e 0 k,a)c: v
j=1 j=1

(—ig? <~ OOk e; O, |
D 2 ok,
9@]{3 eij)C/ (9®k,a>cfb
= }du(

—1/2
Z ”6] ®k|‘2gb

2 (9®k,ej®k)c/
— exp{( 'LQ) [ a,b OQkH%" b:|

+

v)

2\ PEE TR
a,b
(9 © k? €4 © k)cl (9 © k? a’)C/
LNy —1/2 ab a,b 00k
e CELEN + ke,
Jj=1

.

X / exp{ ( )\ZQ) Z 0Ok,e; o k:)cr ’U]}Wg()\, k; 0)dv(v)
" =

_ (_Zq)2 0 k 2 2 )\—1/2 0 k
= e { S o2, + (Cigh 200 kaley,

X / exp { Z(;\ZQ) Z(@ ® k, ej ® k)cé b’l}j}Wg()\, k, 17)dV(’l7)
n j:1 ’

Next, using the techniques similar to those used in the proof of Theorem 5.4,
one can obtain the analytic Zj-function space integral J7.,, (Zx; A) = I;™ [Fa9],
as a function of A on C,, such that J5,(Zk; A) = Jpee (Zx; A) for all A > 0.
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Let I'y, be the domain in C, given by (6.2) and let A > 1 be given. Since

—iq € Ty, for any real number ¢ with |g| > qo, if A = —ig in C. there exists
a real number § > 0 such that for all A\ € Ns(—ig) N Ty, (the set Ns(—iq)
indicates the open neighborhood of —ig with radius ¢ in C),

exp {@ 2(9 Ok,e® k>Cg,ij}

Jj=1

(7.8) < A.

Hence, in the last expression of (7.7), we observe that for all A € Ns(—ig)NTy,,

/ exp{z(;@ Ok, e; @k)céybvj}Wg(/\,k;ﬁ)dy(ﬁ)
" 1

]:
S\/
n

laly, I Dkl
< [ e {TEEE S el o babd(@)
n ‘7:1 Yb

< +

n

exp { Z(;\ZQ) Z(@ Oke© k>cé,bvj}

j=1

[We(A, k; 9)|d|v|(7)

by the inequalities (7.8) and (6.3) above. Thus, by the dominated convergence
theorem, (7.2), (3.3) and (6.5), it follows that for real ¢ with |g| > qo,

TR =l T P
PYSI O

- \2
: —iq -
= lim eXP{(Q—)\)|9®k|2c;,b+(ZQ>>\ 1/2(991%0)0;%,)}

i(—iq) o
X / exp{ ( 5 ) 2(9 Oke® k)cfl,bvj}wé()" k; 0)dv (V)
j=1
_ _ ﬂ 0 2 _s\1/2 0
= exp 5 10Okle,  +(~ig) (0 ©k,a)c,,
X / exp {z Z(ej ©k,zo)cr bvj}Wg(iq, k; 0)dv (V)
n j=1 ’

) .
= exp{ — S0 kIZ, | +(—ig) (00 k,a>c;,b}Té?,3<F><zk<xo, )).

Thus, the generalized analytic Zi-Feynman integral I anq [F1] exists. Equa-
tions (4.3) with y replaced with Zj(zo, -) and (7.9) yield the equation (7.3). O
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Theorem 7.3. Let qo, k, F, 0, and xq be as in Theorem 7.1. Then for all real
q with |q| > qo and s-a.e. y € Cy[0,T],

T3 (F)(y + Zi(o, )

- {que@ma — (~ig) 20 o k,a)cy, +ig(0,y)" }Té?k’(FqG)(y%

where F9° is given by equation (7.1) above.

Proof. By Theorem 6.1, the analytic Z;,-GFFT on the left hand side of equation
(7.10) exists.
Given y € Cq (0,77, let

(7.11) Gy(z) = F(y + x).

Clearly, for the complex measure v associated with F by (5.4), the set function
vy : B(R™) — C given by v, (B) = [ exp{i >_7_, (e;,y)~v;}dv(¥) is an element
of M(R™). From this, we see that

n

(7.12) Gy (x) = /nexp {iZ(ej,x)ij}duy(ﬁ)

j=1

for s-a.e. x € Cyp[0,7T], and that G, belongs to ‘EA. We also observe that
given y € Cy [0, T,

lallcs, 1 Dklloc
/ne"p{ 20 Z|€J”C;b|”a|}dlvyl()
lallcs, 1 Dklloc
- /nexp{ V20 Z|€J”C;b|”a|}dIV|( 7) < +o0,

and that Gy is an element of Sqo *,
Next let

(7.13) GZG (x) = Gy(z) exp{—ig(0,x)~}.

Then, using (4.3) with F replaced with F'%, (7.1), (7.12) and (7.13), we obtain
the equation

TN () (y) = A Py + Zx(x, )]

7.14
(7.14) = exp{—iq(0,y)~ 2 (G2 (Zk(x, ")),

Since G is an element of %ff{”k, applying Theorem 7.1 with G, instead of F,
we guarantee the existence of the analytic Z,-GFFT Tq(lk)(qu) of 9,
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Now, we need only to verify the equality in equation (7.10). But, applying
equations (4.3), (7.11), (7.3) with F and F% replaced with G, and G% respec-
tively, and (7.14), it follows that for real ¢ with |g| > go and s-a.e. y € Cy 5[0, T],

TU)(F)(y + Zi(xo, )
LGy (Zk(@, ) + Zi(@o, )]

Kl
- {—Wka/<¢@Ww@kww@}“ﬁww<<,w1

= e { 100 kllcy, — (~ia)/20 0 k.a)ey, +ia(0.y)" }
x I fexp{—iq(0, y)~} G2 (Zy(x, )]
7 . . ~
exp { 210 Hley, ~ (~i0)"20 © ke, +ia(0,)” [TL(F) )

as desired. 0

Remark 7.4. In view of Theorem 6.3, it also follows that for all p € (1,2] and
for s-a.e. y € Cy (0,7,

T (F)(y + Zi(zo,))
T (F)(y + Zx(0,-))

7
exp{ 0@ kIR, — (~i0)"20 © Kaey, +ial0,)” TR (E®) ).
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