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A TRANSLATION THEOREM FOR THE GENERALIZED

FOURIER–FEYNMAN TRANSFORM ASSOCIATED WITH

GAUSSIAN PROCESS ON FUNCTION SPACE

Seung Jun Chang†, Jae Gil Choi∗, and Ae Young Ko

Abstract. In this paper we define a generalized analytic Fourier–Feyn-
man transform associated with Gaussian process on the function space
Ca,b[0, T ]. We establish the existence of the generalized analytic Fourier–
Feynman transform for certain bounded functionals on Ca,b[0, T ]. We
then proceed to establish a translation theorem for the generalized trans-
form associated with Gaussian process.

1. Introduction

Let C0[0, T ] denote one-parameter Wiener space. The concept of the ana-
lytic Fourier–Feynman transform on C0[0, T ], initiated by Brue [3], has been
developed in the literature. This transform and its properties are similar in
many respects to the ordinary Fourier function transform. For an elemen-
tary introduction to the analytic Fourier–Feynman transform, see [29] and the
references cited therein. Various kinds of the study for the analytic Fourier–
Feynman transform and related topics were developed on abstractWiener space
[1, 2, 11, 12, 13, 25], space of abstract Wiener space valued continuous func-
tions on compact interval in R [8, 9, 10, 17, 18, 19], and the analogue of Wiener
space [20, 28].

Let D = [0, T ] and let (Ω,F , P ) be a probability space. A generalized
Brownian motion process (GBMP) on Ω×D is a Gaussian process Y ≡ {Yt}t∈D
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such that Y0 = 0 almost everywhere, and for any 0 ≤ s < t ≤ T ,

Yt − Ys ∼ N
(

a(t)− a(s), b(t)− b(s)
)

,

where N(m,σ2) denotes the normal distribution with mean m and variance σ2,
a(t) is a continuous real-valued function on [0, T ], and b(t) is a monotonically
increasing continuous real-valued function on [0, T ]. Thus, the GBMP Y is
determined by the functions a(t) and b(t). For more details, see [31, 32]. Note
that when a(t) ≡ 0 and b(t) = t, the GBMP is a standard Brownian motion
(Wiener process).

In [14, 16], the authors defined the generalized analytic Feynman integral and
the generalized analytic Fourier–Feynman transform (GFFT) on the function
space Ca,b[0, T ], and studied their properties and related topics. The function
space Ca,b[0, T ], induced by a GBMP, was introduced by Yeh in [31], and
was used extensively in [14, 15, 16, 21, 23]. There have also been several
recent attempts to construct financial mathematical theories using this process
[22, 24, 26].

In this paper, using the Gaussian processes Zk defined on the function space
Ca,b[0, T ] (see Section 4 below), we define a GFFT associated with the process
Zk(the Zk-GFFT). We then establish the existence of the Zk-GFFT for certain
bounded functionals on Ca,b[0, T ]. We also proceed to establish a translation
theorem for the generalized transform.

The steps contained in establishing the results involving Zk-GFFTs are quite
complicated, because the GBMP and the Gaussian process Zk used in this pa-
per are subject to drifts and are non-stationary in time. However, by choosing
a(t) ≡ 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ] reduces to the
Wiener space C0[0, T ], and so the expected results on C0[0, T ] are immediate
corollaries of the results in this paper.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [14, 16, 21] that
we will need to establish our results in the next sections.

Let a(t) be an absolutely continuous real-valued function on [0, T ] with
a(0) = 0 and a′(t) ∈ L2[0, T ], and let b(t) be a strictly increasing, continu-
ously differentiable real-valued function with b(0) = 0 and b′(t) > 0 for each
t ∈ [0, T ]. The GBMP Y determined by a(t) and b(t) is a Gaussian process
with mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}. By
[32, Theorem 14.2], the probability measure µ induced by Y , taking a sepa-
rable version, is supported by Ca,b[0, T ] (which is equivalent to the Banach
space of continuous functions x on [0, T ] with x(0) = 0 under the sup norm).
Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y where
B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ]. We then complete this func-
tion space to obtain (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where W(Ca,b[0, T ]) is the set
of all Wiener measurable subsets of Ca,b[0, T ].
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We note that the coordinate process defined by et(x) = x(t) on Ca,b[0, T ]×
[0, T ] is also the GBMP determined by a(t) and b(t). For more detailed studies
about this function space Ca,b[0, T ], see [14, 15, 16, 21, 31].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable provided
ρB is W(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable
set N is said to be a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0.
A property that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e.). A functional F is said to be scale-invariant
measurable provided F is defined on a scale-invariant measurable set and F (ρ · )
is W(Ca,b[0, T ])-measurable for every ρ > 0. If two functionals F and G defined
on Ca,b[0, T ] are equal s-a.e., we write F ≈ G.

Let L2
a,b[0, T ] be the space of functions on [0, T ] which are Lebesgue mea-

surable and square integrable with respect to the Lebesgue-Stieltjes measures
on [0, T ] induced by a(·) and b(·); i.e.,

L2
a,b[0, T ] :=

{

v :

∫ T

0

v2(s)db(s) < +∞ and

∫ T

0

v2(s)d|a|(s) < +∞
}

,

where |a|(·) denotes the total variation function of a(·). Then L2
a,b[0, T ] is a

separable Hilbert space with inner product defined by

(u, v)a,b :=

∫ T

0

u(t)v(t)dm|a|,b(t) ≡
∫ T

0

u(t)v(t)d[b(t) + |a|(t)],

where m|a|,b denotes the Lebesgue-Stieltjes measure induced by |a|(·) and b(·).
In particular, note that ‖u‖a,b ≡

√

(u, u)a,b = 0 if and only if u(t) = 0 a.e. on
[0, T ].

Let

C′
a,b[0, T ] :=

{

w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}

.

For w ∈ C′
a,b[0, T ], with w(t) =

∫ t

0 z(s)db(s) for t ∈ [0, T ], let D : C′
a,b[0, T ] →

L2
a,b[0, T ] be defined by the formula

(2.1) Dw(t) := z(t) =
w′(t)

b′(t)
.

Then C′
a,b ≡ C′

a,b[0, T ] with inner product

(w1, w2)C′

a,b
:=

∫ T

0

Dw1(t)Dw2(t)db(t)

is a separable Hilbert space.
Note that the two separable Hilbert spaces L2

a,b[0, T ] and C′
a,b[0, T ] are (topo-

logically) homeomorphic under the linear operator given by equation (2.1). The
inverse operator of D is given by

(D−1z)(t) =

∫ t

0

z(s)db(s), t ∈ [0, T ].
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In this paper, in addition to the conditions put on a(t) above, we now add
the condition

(2.2)

∫ T

0

|a′(t)|2d|a|(t) < +∞

from which it follows that
∫ T

0

|Da(t)|2d[b(t) + |a|(t)] =
∫ T

0

∣

∣

∣

∣

a′(t)

b′(t)

∣

∣

∣

∣

2

d[b(t) + |a|(t)]

< M‖a′‖L2[0,T ] +M2

∫ T

0

|a′(t)|2d|a|(t) < +∞,

where M = supt∈[0,T ](1/b
′(t)). Thus, the function a : [0, T ] → R satisfies

the condition (2.2) if and only if a(·) is an element of C′
a,b[0, T ]. Under the

condition (2.2), we observe that for each w ∈ C′
a,b[0, T ] with Dw = z,

(w, a)C′

a,b
:=

∫ T

0

Dw(t)Da(t)db(t) =

∫ T

0

z(t)da(t).

For each w ∈ C′
a,b[0, T ] and x ∈ Ca,b[0, T ], we let

(w, x)∼ :=

∫ T

0

Dw(t)dx(t).

This integral is called the Paley-Wiener-Zygmund (PWZ) stochastic integral,
see [21]. Our definition of the PWZ stochastic integral is different than the
definition given in [14, 16, 23]. But we will emphasize that the following fun-
damental facts are still true:

(i) The PWZ stochastic integral (w, x)∼ is defined for s-a.e. x ∈ Ca,b[0, T ].
(ii) It follows from the definition of the PWZ stochastic integral and from

Parseval’s equality that if w ∈ C′
a,b[0, T ] and x ∈ C′

a,b[0, T ], then

(w, x)∼ exists and we have (w, x)∼ = (w, x)C′

a,b
.

(iii) If Dw = z ∈ L2
a,b[0, T ] is of bounded variation on [0, T ], then the

PWZ stochastic integral (w, x)∼ equals the Riemann-Stieltjes integral
∫ T

0 z(t)dx(t) for µ-a.e. x ∈ Ca,b[0, T ].
(iv) The PWZ stochastic integral has the expected linearity properties.

That is, for any real number c, w ∈ C′
a,b[0, T ] and x ∈ Ca,b[0, T ],

we have

(w, cx)∼ = c(w, x)∼ = (cw, x)∼.

(v) For each w ∈ C′
a,b[0, T ], (w, x)

∼ is a Gaussian random variable with

mean (w, a)C′

a,b
and variance ‖w‖2

C′

a,b

. For all w1, w2 ∈ C′
a,b[0, T ], we

have
∫

Ca,b[0,T ]

(w1, x)
∼(w2, x)

∼dµ(x) = (w1, w2)C′

a,b
+ (w1, a)C′

a,b
(w2, a)C′

a,b
.
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Thus, if {w1, . . . , wn} is an orthogonal set in C′
a,b[0, T ], then the Gauss-

ian random variables (wj , x)
∼’s are independent.

From the assertion (v) above, we obtain the very important integration
formula on the function space Ca,b[0, T ]. Let {w1, . . . , wn} be an orthogonal
set of functions in (C′

a,b[0, T ], ‖ · ‖C′

a,b
), and let f : Rn → C be a Lebesgue

measurable function. Then

(2.3)

∫

Ca,b[0,T ]

f
(

(w1, x)
∼, . . . , (wn, x)

∼)dµ(x)

=

( n
∏

j=1

2π‖wj‖2C′

a,b

)−n/2 ∫

Rn

f(u1, . . . , un)

× exp

{

−
n
∑

j=1

[uj − (wj , a)C′

a,b
]2

2‖wj‖2C′

a,b

}

du1 · · · dun

in the sense that if either side of equation (2.3) exists, both sides exist and
equality holds.

Throughout this paper, let C, C+ and ˜C+ denote the set of complex numbers,
complex numbers with positive real part, and nonzero complex numbers with
nonnegative real part, respectively. Furthermore, for each λ ∈ C, λ1/2 denotes
the principal square root of λ, i.e., λ1/2 is always chosen to have nonnegative

real part, so that λ−1/2 = (λ1/2)−1 is in C+ for all λ ∈ ˜C+. Then we have the
following: for λ ∈ C with λ = α+ iβ,

(2.4) λ−1/2 ≡ (λ1/2)−1 =

√√
α2+β2+α

2(α2+β2) − isign(β)

√√
α2+β2−α

2(α2+β2) ,

where sign(β) = 1 if β ≥ 0 and sign(β) = −1 if β < 0.
The following integration formula is used several times in this paper:

(2.5)

∫

R

exp
{

− αu2 + βu
}

du =

√

π

α
exp

{β2

4α

}

for complex numbers α and β with Re(α) > 0.

3. Gaussian process and the commutative algebra (C∗

a,b[0, T ],⊙)

For each t ∈ [0, T ], let χ[0,t] denote the characteristic function of the interval

[0, t] and for k ∈ C′
a,b[0, T ] with Dk = h and with ‖k‖2C′

a,b

=
∫ T

0 h2(t)db(t) > 0,

let Zk(x, t) be the PWZ stochastic integral

(3.1) Zk(x, t) := (D−1(hχ[0,t]), x)
∼.

Let γk(t) :=
∫ t

0
h(u)da(u) and let βk(t) :=

∫ t

0
h2(u)db(u). Then the stochastic

process Zk : Ca,b[0, T ]× [0, T ] → R is a Gaussian process with mean function
∫

Ca,b[0,T ]

Zk(x, t)dµ(x) =

∫ t

0

h(u)da(u) = γk(t)
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and covariance function
∫

Ca,b[0,T ]

(

Zk(s)− γk(s)
)(

Zk(t)− γk(t)
)

dµ(x)

=

∫ min{s,t}

0

h2(u)db(u) = βk(min{s, t}).

In addition, by [32, Theorem 21.1], Zk(·, t) is stochastically continuous in t on
[0, T ]. If h = Dk is of bounded variation on [0, T ], then, for all x ∈ Ca,b[0, T ],
Zk(x, t) is continuous in t. Of course if k(t) ≡ b(t), then Zb(x, t) = x(t).
Furthermore, if a(t) ≡ 0 and b(t) = t on [0, T ], then the function space Ca,b[0, T ]
reduces to the classical Wiener space C0[0, T ] and the Gaussian process (3.1)
with k(t) ≡ t is an ordinary Wiener process.

Let C∗
a,b[0, T ] be the set of functions k in C′

a,b[0, T ] such thatDk is continuous
except for a finite number of finite jump discontinuities and is of bounded
variation on [0, T ]. For any w ∈ C′

a,b[0, T ] and k ∈ C∗
a,b[0, T ], let the operation

⊙ between C′
a,b[0, T ] and C∗

a,b[0, T ] be defined by

w ⊙ k := D−1(DwDk), i.e., D(w ⊙ k) = DwDk,

where DwDk denotes the pointwise multiplication of the functions Dw and
Dk. Then we observe the following algebraic structures:

• C′
a,b[0, T ]× C∗

a,b[0, T ] ∋ (w, k) 7→ w ⊙ k ∈ C′
a,b[0, T ].

• For every w ∈ C′
a,b[0, T ] and every k1, k2 ∈ C∗

a,b[0, T ],

(w ⊙ k1)⊙ k2 = w ⊙ (k1 ⊙ k2)

and

w ⊙ (k1 + k2) = w ⊙ k1 + w ⊙ k2.

• For every w1, w2 ∈ C′
a,b[0, T ] and every k ∈ C∗

a,b[0, T ],

(w1 + w2)⊙ k = w1 ⊙ k + w2 ⊙ k.

• For every w1, w2 ∈ C′
a,b[0, T ] and every k ∈ C∗

a,b[0, T ],

(w1, w2 ⊙ k)C′

a,b
= (w1 ⊙ k, w2)C′

a,b
.

We also observe that for w ∈ C′
a,b[0, T ] and k ∈ C∗

a,b[0, T ],

(3.2)

‖w ⊙ k‖C′

a,b
= (w ⊙ k, w ⊙ k)

1/2
C′

a,b

=

[ ∫ T

0

{Dw(t)}2{Dk(t)}2db(t)
]1/2

≤ ‖Dk‖∞
[
∫ T

0

{Dw(t)}2db(t)
]1/2

= ‖Dk‖∞‖w‖C′

a,b
,

where ‖ · ‖∞ denotes the essential supremum norm.
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Remark 3.1. (C∗
a,b[0, T ],⊙) is a commutative algebra with the identity b(·).

For w ∈ C′
a,b[0, T ] and k ∈ C∗

a,b[0, T ], it follows that

(3.3)

(w,Zk(x, ·))∼ =

∫ T

0

Dw(t)d

(∫ t

0

Dk(s)dx(s)

)

=

∫ T

0

Dw(t)Dk(t)dx(t) = (w ⊙ k, x)∼

for s-a.e x ∈ Ca,b[0, T ]. Thus, throughout the remainder of this paper, we
require k to be in C∗

a,b[0, T ] for each process Zk. This will ensure that the
Lebesgue-Stieltjes integrals

‖w ⊙ k‖2C′

a,b

=

∫ T

0

(Dw(t))2(Dk(t))2db(t),

and

(w ⊙ k, a)C′

a,b
=

∫ T

0

Dw(t)Dk(t)Da(t)db(t) =

∫ T

0

Dw(t)Dk(t)da(t)

will exist for all w ∈ C′
a,b[0, T ] and k ∈ C∗

a,b[0, T ].

4. Generalized analytic Fourier–Feynman transform

associated with Gaussian process

We define the Zk-function space integral (namely, the function space integral
associated with the Gaussian process Zk) for functionals F on Ca,b[0, T ] as the
formula

Ik[F ] ≡ Ik,x[F (Zk(x, ·))] :=
∫

Ca,b[0,T ]

F (Zk(x, ·))dµ(x)

whenever the integral exists.

Definition 4.1. Let Zk be the Gaussian process given by (3.1) and let F be
a C-valued scale-invariant measurable functional on Ca,b[0, T ] such that

JF (Zk;λ) := Ik,x[F (λ−1/2Zk(x, ·))]
exists and is finite for all λ > 0. Let Λ be a domain in C+ such that (0,+∞)∩Λ
is an open interval of positive real numbers. If there exists a function J∗

F (Zk;λ)
analytic on Λ such that J∗

F (Zk;λ) = JF (Zk;λ) for all λ ∈ (0,+∞) ∩ Λ, then
J∗
F (Zk;λ) is defined to be the analytic Zk-function space integral (namely, the

analytic function space integral associated with the Gaussian process Zk) of F
over Ca,b[0, T ] with parameter λ, and for λ ∈ Λ we write

(4.1) Ianλ

k [F ] ≡ Ianλ

k,x [F (Zk(x, ·))] ≡
∫ anλ

Ca,b[0,T ]

F
(

Zk(x, ·)
)

dµ(x) := J∗
F (Zk;λ).

Let q be a nonzero real number and let Γq be a connected neighborhood of

−iq in ˜C+ such that (0,+∞)∩ Γq is an open interval of positive real numbers.
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Let F be a measurable functional whose analytic Zk-function space integral

exists for all λ in Int(Γq), the interior of Γq in ˜C+. If the following limit exists,
we call it the generalized analytic Zk-Feynman integral (namely, the generalized
analytic Feynman integral associated with the process Zk) of F with parameter
q and we write

(4.2) I
anfq
k [F ] ≡ I

anfq
k,x [F (Zk(x, ·))] := lim

λ→−iq
Ianλ

k,x [F (Zk(x, ·))],

where λ approaches −iq through values in Int(Γq).

Next we state the definition of the Zk-GFFT on function space.

Definition 4.2. Let Zk be the Gaussian process given by (3.1) and let F be
a scale-invariant measurable functional on Ca,b[0, T ]. Let q be a nonzero real

number, and let Γq be a connected neighborhood of −iq in ˜C+ such that for
all λ ∈ Int(Γq) and y ∈ Ca,b[0, T ], the following analytic Zk-function space
integral

Tλ,k(F )(y) := Ianλ

k,x [F (y + Zk(x, ·))]
exists. For p ∈ (1, 2], we define the Lp analytic Zk-GFFT (namely, the GFFT

associated with the process Zk), T
(p)
q,k (F ) of F , by the formula,

T
(p)
q,k (F )(y) := l. i.m.

λ→−iq
λ∈Int(Γq)

Tλ,k(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq
λ∈Int(Γq)

∫

Ca,b[0,T ]

∣

∣Tλ,k(F )(ρy) − T
(p)
q,k (F )(ρy)

∣

∣

p′

dµ(y) = 0,

where 1/p+ 1/p′ = 1. We define the L1 analytic Zk-GFFT, T
(1)
q,k (F ) of F , by

the formula

(4.3) T
(1)
q,k (F )(y) := lim

λ→−iq
λ∈Int(Γq)

Tλ,k(F )(y) = I
anfq
k,x [F (y + Zk(x, ·))]

if it exists.

We note that for 1 ≤ p ≤ 2, T
(p)
q,k (F ) is defined only s-a.e.. We also note that

if T
(p)
q,k (F ) exists and if F ≈ G, then T

(p)
q,k (G) exists and T

(p)
q,k (G) ≈ T

(p)
q,k (F ).

Moreover, from equations (4.1), (4.2) and (4.3), we have

(4.4) I
anfq
k [F ] ≡ I

anfq
k,x [F (Zk(x, ·))] = T

(1)
q,k (F )(0)

if both side exist.

Remark 4.3. Note that if k ≡ b on [0, T ], then the generalized analytic Zb-

Feynman integral, I
anfq
b [F ], and the Lp analytic Zb-GFFT, T

(p)
q,b (F ), agree with

the previous definitions of the generalized analytic Feynman integral and the
Lp analytic GFFT respectively [14, 16].



A TRANSLATION THEOREM ON FUNCTION SPACE 999

5. Bounded cylinder functionals

A functional F is called a cylinder functional on Ca,b[0, T ] if there exists a
finite subset {w1, . . . , wm} of C′

a,b[0, T ] such that

(5.1) F (x) = φ((w1, x)
∼, . . . , (wm, x)∼), x ∈ Ca,b[0, T ],

where φ is a C-valued Lebesgue measurable function on Rm. It is easy to show
that for given cylinder functional F of the form (5.1) there exists an orthogonal
set {e1, . . . , en} of functions in C′

a,b[0, T ] \ {0} such that F is expressed as

(5.2) F (x) = f((e1, x)
∼, . . . , (en, x)

∼), x ∈ Ca,b[0, T ],

where f is a C-valued Lebesgue measurable function on Rn. Thus we lose no
generality in assuming that every cylinder functional on Ca,b[0, T ] is of the form
(5.2).

For k ∈ C∗
a,b[0, T ] with ‖k‖C′

a,b
> 0, let Zk be the Gaussian process given by

(3.1) above and let F be given by equation (5.2). Then by equation (3.3),

F (Zk(x, ·)) = f((e1,Zk(x, ·))∼, . . . , (en,Zk(x, ·))∼)
= f((e1 ⊙ k, x)∼, . . . , (en ⊙ k, x)∼).

Even though the subset A = {e1, . . . , en} of C′
a,b[0, T ] is orthogonal, the subset

A⊙ k ≡ {e⊙ k : e ∈ A}
of C′

a,b[0, T ] need not be orthogonal.

Given an orthogonal set A = {e1, . . . , en} of functions in C′
a,b[0, T ] \ {0}, let

O∗(A) be the class of all nonzero elements k ∈ C∗
a,b[0, T ] such that A ⊙ k is

orthogonal in C′
a,b[0, T ]. Since dimC′

a,b[0, T ] = ∞, infinitely many elements k

exist in O∗(A).

Example 5.1. For every ρ ∈ R \ {0}, ρb(·) is an element of O∗(A) for any
orthogonal set A in C′

a,b[0, T ].

Example 5.2. Given any orthogonal set A = {e1, . . . , en} of functions in
C′

a,b[0, T ], each of whose elements is in C∗
a,b[0, T ]\{0}, let L(S) be the subspace

of C′
a,b[0, T ] which is spanned by S = {ei ⊙ ej : 1 ≤ i < j ≤ n}, and let L(S)⊥

be the orthogonal complement of L(S). Let

P∗(A) := {k ∈ C∗
a,b[0, T ] : k ⊙ k ∈ L(S)⊥ and ‖k‖C′

a,b
> 0}.

Since dimL(S) is finite, and C∗
a,b[0, T ] is dense in C′

a,b[0, T ], dim(L(S)⊥ ∩
C∗

a,b[0, T ]) = ∞ and so P∗(A) has infinitely many elements.

Let k be an element of P∗(A). It is easy to show that ‖ej ⊙ k‖C′

a,b
> 0

for all j ∈ {1, . . . , n}. From the definition of the P∗(A), we see that for i, j ∈
{1, . . . , n} with i 6= j,

(ei ⊙ k, ej ⊙ k)C′

a,b
=

∫ T

0

Dei(t)Dej(t)(Dk)2(t)db(t)

= (ei ⊙ ej, k ⊙ k)C′

a,b
= 0.
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From these, we see that A ⊙ k is an orthogonal set in C′
a,b[0, T ] for any k in

P∗(A), i.e., P∗(A) ⊂ O∗(A).

We clearly observe that for orthogonal sets A1 and A2 in C′
a,b[0, T ] with

A1 ⊂ A2, O∗(A2) ⊂ O∗(A1).
Let M(Rn) denote the space of C-valued Borel measures on B(Rn). It is well

known that a C-valued Borel measure ν necessarily has a finite total variation
‖ν‖, and M(Rn) is a Banach algebra under the norm ‖·‖ and with convolution
as multiplication.

For ν ∈ M(Rn), the Fourier transform ν̂ of ν is a C-valued function defined
on Rn by the formula

(5.3) ν̂(~u) :=

∫

Rn

exp

{

i

n
∑

j=1

ujvj

}

dν(~v),

where ~u = (u1, . . . , un) and ~v = (v1, . . . , vn) are in Rn.
Let A = {e1, . . . , en} be an orthogonal set of functions in C′

a,b[0, T ] \ {0}.
Define the functional F : Ca,b[0, T ] → C by

(5.4) F (x) = ν̂((e1, x)
∼, . . . , (en, x)

∼), x ∈ Ca,b[0, T ],

for s-a.e. x ∈ Ca,b[0, T ], where ν̂ is the Fourier transform of ν in M(Rn). Then
F is a bounded cylinder functional because |ν̂(~u)| ≤ ‖ν‖ < +∞.

Given an orthogonal subset A = {e1, . . . , en} of C′
a,b[0, T ] \ {0}, let ̂TA be

the space of all functionals F on Ca,b[0, T ] having the form (5.4). Note that

F ∈ ̂TA implies that F is scale-invariant measurable on Ca,b[0, T ]. Throughout
the rest of this paper, we fix the orthogonal set A.

Lemma 5.3. Let A = {e1, . . . , en} be an orthogonal subset of C′
a,b[0, T ] \ {0}.

Then, for every k ∈ O∗(A) and all ζ ∈ C+, the function space integral

K ≡ Ik,x

[

exp

{

iζ
n
∑

j=1

(ej ,Zk(x, ·))∼vj
}]

exists and is given by the formula

(5.5) K = exp

{

− ζ2

2

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j + iζ

n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

}

.

Proof. Using (3.3), (2.3), Fubini’s theorem, and (2.5), it follows immediately
that equation (5.5) holds for all ζ ∈ C+. �

For notational convenience we use the following notation throughout this
paper:

We1,...,en(λ, k; v1, . . . , vn)

(5.6)
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≡ W~e(λ, k;~v) = exp

{

− 1

2λ

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j + iλ−1/2
n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

}

for an orthogonal subsetA = {e1, . . . , en} of C′
a,b[0, T ]\{0}, k ∈ O∗(A), λ ∈ ˜C+

and ~v = (v1, . . . , vn) ∈ Rn.
In next theorem, we establish the existence of the analytic Zk-function space

integral Tλ,k(F )(y) = Ianλ

k,x [F (y + Zk(x, ·))] of the functionals F in ̂TA.

Theorem 5.4. Let F ∈ ̂TA be given by equation (5.4) and let k be an element

of O∗(A). Then for all λ ∈ C+, Tλ,k(F ) exists and is given by the formula

(5.7) Tλ,k(F )(y) =

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

W~e(λ, k;~v)dν(~v)

for s-a.e. y ∈ Ca,b[0, T ], where W~e(λ, k;~v) is given by equation (5.6) above.

Proof. By (5.4), (5.3), Fubini’s theorem, (5.5) with ζ replaced with λ−1/2, and
(5.6), we have that for all λ > 0 and s-a.e. y ∈ Ca,b[0, T ],

JF (y+·)(Zk;λ) ≡ Ik,x[F (y + λ−1/2Zk(x, ·))]

=

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

W~e(λ, k;~v)dν(~v).

Now let

J∗
F (y+·)(Zk;λ) :=

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

W~e(λ, k;~v)dν(~v)

for λ ∈ C+. Then J∗
F (y+·)(Zk;λ) = JF (y+·)(Zk;λ) for all λ > 0. We will use

the Morera theorem to show that J∗
F (y+·)(Zk;λ) is analytic on C+ as a function

of λ. Let {λl}∞l=1 be a sequence in C+ such that λl → λ. Then λ
−1/2
l → λ−1/2

and Re(λl) > 0 for all l ∈ N. Thus it follows that for each l ∈ N,
∣

∣

∣

∣

exp

{

i
n
∑

j=1

(ej , y)
∼vj

}

W~e(λl, k;~v)

∣

∣

∣

∣

=
∣

∣W~e(λl, k;~v)
∣

∣

=

∣

∣

∣

∣

exp

{

− 1

2λl

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j + iλ
−1/2
l

n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

}∣

∣

∣

∣

= exp

{

− Re(λl)

2|λl|2
n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j − Im(λ
−1/2
l )

n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

}∣

∣

∣

∣

= exp

{

− 1

2

n
∑

j=1

[

√

Re(λl)‖ej ⊙ k‖C′

a,b

|λl|
vj +

|λl|Im(λ
−1/2
l )(ej ⊙ k, a)C′

a,b

√

Re(λl)‖ej ⊙ k‖C′

a,b

]2
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+
1

2

n
∑

j=1

|λl|2(Im(λ
−1/2
l ))2(ej ⊙ k, a)2

C′

a,b

Re(λl)‖ej ⊙ k‖2
C′

a,b

}

≤ exp

{ |λl|2(Im(λ
−1/2
l ))2

2Re(λl)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

.

Since ν ∈ M(Rn), we see that

∣

∣

∣

∣

∫

Rn

exp

{ |λl|2(Im(λ
−1/2
l ))2

2Re(λl)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

dν(~v)

∣

∣

∣

∣

≤
∫

Rn

exp

{ |λl|2(Im(λ
−1/2
l ))2

2Re(λl)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

d|ν|(~v)

= exp

{ |λl|2(Im(λ
−1/2
l ))2

2Re(λl)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

‖ν‖ < +∞

for each l ∈ N. Furthermore we have that

lim
l→∞

∫

Rn

exp

{ |λl|2(Im(λ
−1/2
l ))2

2Re(λl)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

d|ν|(~v)

= lim
l→∞

exp

{ |λl|2(Im(λ
−1/2
l ))2

2Re(λl)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

|ν|(Rn)

= exp

{ |λ|2(Im(λ−1/2))2

2Re(λ)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

|ν|(Rn)

=

∫

Rn

exp

{ |λ|2(Im(λ−1/2))2

2Re(λ)

n
∑

j=1

(ej ⊙ k, a)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

d|ν|(~v).

Thus, by Theorem 4.17 in [27, p. 92], J∗
F (y+·)(Zk;λ) is continuous on C+. Since

g(λ) ≡ exp

{

i
n
∑

j=1

(ej , y)
∼vj

}

W~e(λ, k;~v)

is analytic on C+, applying Fubini’s theorem, we have
∫

△
J∗
F (y+·)(Zk;λ)dλ =

∫

Rn

∫

△
g(λ)dλdν(~v) = 0

for all rectifiable simple closed curve △ lying in C+. Thus by the Morera
theorem, J∗

F (y+·)(Zk;λ) is analytic on C+. Therefore the analytic function

space integral

J∗
F (y+·)(Zk;λ) = Ianλ

k,x [F (y + Zk(x, ·))] ≡ Tλ,k(F )(y)
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exists on C+ and is given by equation (5.7) for all λ ∈ C+. �

6. Zk-generalized Fourier–Feynman transforms

of bounded cylinder functionals

The following observation will be very useful in the development of our

results for the Zk-GFFT of functionals F in ̂TA.
If a(t) ≡ 0 on [0, T ], then for all functionals F given by equation (5.4), the

L1 analytic Zk-GFFT T
(1)
q,k (F ) will always exist for all real q 6= 0 and be given

by the formula

T
(1)
q,k (F )(y) =

∫

Rn

exp

{

i
n
∑

j=1

(ej , y)
∼vj

}

W~e(−iq, k;~v)dν(~v)

=

∫

Rn

exp

{

i
n
∑

j=1

(ej , y)
∼vj −

i

2q

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j

}

dν(~v).

However for a(t) as in Section 2, and proceeding formally using equations (5.4)

and (5.7), we see that T
(1)
q,k (F )(y) will be given by equation (6.5) below if it

exists. But the integral on the right-hand side of (6.5) might not exist if the
real part of

LogW~e(−iq, k;~v) =

{

− i

2q

n
∑

j=1

‖ej⊙k‖2C′

a,b

v2j + i(−iq)−1/2
n
∑

j=1

(ej⊙k, a)C′

a,b
vj

}

is positive. However, by the Cauchy-Schwartz inequality and (3.2),

∣

∣W~e(−iq, k;~v)
∣

∣ ≤ exp

{‖a‖C′

a,b
‖Dk‖∞

√

|2q|

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

,

and so the L1 analytic Zk-GFFT T
(1)
q (F ) of F will certainly exist provided the

associated measure ν of F satisfies the condition
∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞

√

|2q|

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v) < +∞.(6.1)

Note that in case a(t) ≡ 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ]
reduces to the classical Wiener space C0[0, T ] and (ej ⊙ k, a)C′

a,b
= 0 for all

j = 1, . . . , n. Hence for all λ ∈ ˜C+,

∣

∣W~e(λ, k;~v)
∣

∣ =

∣

∣

∣

∣

exp

{

− 1

2λ

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j

}∣

∣

∣

∣

= exp

{

− Re(λ)

2|λ|2
n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j

}

≤ 1.
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Given a positive real number q0, let

(6.2) Γq0 = {λ ∈ ˜C+ : |Im(λ−1/2)| < (2q0)
−1/2}

and let Υq0 = {λ ∈ ˜C+ : |λ| > q0}. Then we can observe the following:

(i) The set Γq0 is an unbounded open set in ˜C+, the topological subspace
of C.

(ii) For any real q with |q| > q0, −iq is an element of Γq0 . In fact, we have

the equality (−iq)−1/2 = 1/
√

2|q|+ isign(q)/
√

2|q| by equation (2.4).
(iii) For any real q with |q| > q0, Γq0 is a connected neighborhood of −iq

in ˜C+ so that (0,+∞) ⊂ Γq0 . More precisely, we observe −iq ∈ Υq0 ⊂
Γq0 .

(iv) For all λ ∈ Γq0 , we have the inequality

(6.3)
∣

∣W~e(λ, k;~v)
∣

∣ ≤ exp

{‖a‖C′

a,b
‖Dk‖∞

√

|2q|

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

.

Given a positive real q0 and an element k ∈ O∗(A), we define a subclass
̂T

q0,k
A of ̂TA by F ∈ ̂T

q0,k
A if and only if the associated measure ν of F by (5.3)

satisfies the condition (6.1) with q replaced with q0.

We will emphasize the fact that ∩q>0
̂T

q,k
A is not empty.

Given ~m = (m1, . . . ,mn) ∈ Rn and ~σ2 = (σ2
1 , . . . , σ

2
n) ∈ Rn with σ2

j > 0,
j = 1, . . . , n, let ν

~m, ~σ2 be the Gaussian measure defined by

(6.4) ν
~m, ~σ2(B) =

( n
∏

j=1

2πσ2
j

)− 1
2
∫

B

exp

{

−
n
∑

j=1

(vj −mj)
2

2σ2
j

}

d~v, B ∈ B(Rn).

Then ν
~m, ~σ2 ∈ M(Rn) and

ν̂
~m, ~σ2(~u) = exp

{

− 1

2

n
∑

j=1

σ2
ju

2
j + i

n
∑

j=1

mjuj

}

.

Using equation (6.4), Fubini’s theorem and equation (2.5), we see that for
any nonzero real q,

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞

√

|2q|

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν
~m, ~σ2 |(~v)

=

n
∏

j=1

[

(2πσ2
j )

−1/2 exp

{

−
m2

j

2σ2
j

}

×
∫ 0

−∞
exp

{

−
v2j
2σ2

j

+

(

mj

σ2
j

−
‖a‖C′

a,b
‖Dk‖∞‖ej‖C′

a,b

√

|2q|

)

vj

}

dvj

+ (2πσ2
j )

−1/2 exp

{

−
m2

j

2σ2
j

}
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×
∫ +∞

0

exp

{

−
v2j
2σ2

j

+

(

mj

σ2
j

+
‖a‖C′

a,b
‖Dk‖∞‖ej‖C′

a,b

√

|2q|

)

vj

}

dvj

]

<

n
∏

j=1

[

(2πσ2
j )

−1/2 exp

{

−
m2

j

2σ2
j

}

×
∫ +∞

−∞
exp

{

−
v2j
2σ2

j

+

(

mj

σ2
j

−
‖a‖C′

a,b
‖Dk‖∞‖ej‖C′

a,b

√

|2q|

)

vj

}

dvj

+ (2πσ2
j )

−1/2 exp

{

−
m2

j

2σ2
j

}

×
∫ +∞

−∞
exp

{

−
v2j
2σ2

j

+

(

mj

σ2
j

+
‖a‖C′

a,b
‖Dk‖∞‖ej‖C′

a,b

√

|2q|

)

vj

}

dvj

]

< +∞.

Theorem 6.1. Given q0 > 0 and k ∈ O∗(A), let F be an element of ̂T
q0,k
A .

Then for all real q with |q| > q0, the L1 analytic Zk-GFFT of F , T
(1)
q,k (F ) exists

and is given by the formula

(6.5) T
(1)
q,k (F )(y) =

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

W~e(−iq, k;~v)dν(~v)

for s-a.e. y ∈ Ca,b[0, T ], where W~e(−iq, k;~v) is given by equation (5.6).

Proof. Let Γq0 be given by equation (6.2). It was shown in the proof of The-
orem 5.4 that Tλ,k(F )(y) is an analytic function of λ throughout C+. Thus,

T
(1)
q,k (F )(y) is analytic on the domain Γq0 .

Let {λl}∞l=1 be any sequence in C+ which converges to −iq through C+.
Then, clearly, W~e(λl, k;~v) converges to W~e(−iq, k;~v). By Theorem 5.4, we
know that the integral

Tλl,k(F )(y) =

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

W~e(λl, k;~v)dν(~v)

exists for all l ∈ N. Since |Arg(λ−1/2
l )| < π/4 for every l ∈ N and λ

−1/2
l =

Re(λ
−1/2
l ) + iIm(λ

−1/2
l ) → (−iq)−1/2 = 1/

√

|2q|+ isign(q)/
√

|2q|, we see that

Re(λ
−1/2
l ) > |Im(λ

−1/2
l )| for every l ∈ N, and so there exists a sufficiently large

L ∈ N such that |Im(λ
−1/2
l )| < 1/

√

|2q0|, i.e., λl ∈ Γq0 for every l ≥ L. Thus
for each l ≥ L,

|W~e(λl, k;~v)|

=

∣

∣

∣

∣

exp

{

− 1

2

(

[Re(λ
−1/2
l )]2 − [Im(λ

−1/2
l )]2
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+ iRe(λ
−1/2
l )Im(λ

−1/2
l )

)

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j

+ i
(

Re(λ
−1/2
l ) + iIm(λ

−1/2
l )

)

n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

}∣

∣

∣

∣

≤ exp

{

− Im(λ
−1/2
l )

n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

}

≤ exp

{

∣

∣Im(λ
−1/2
l )

∣

∣

n
∑

j=1

∣

∣(ej ⊙ k, a)C′

a,b
vj
∣

∣

}

< exp

{‖a‖C′

a,b
‖Dk‖∞

√

|2q|

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

and so, by condition (6.1) with q replaced with q0,

∣

∣Tλl,k(F )(y)
∣

∣ ≤
∫

Rn

∣

∣W~e(λl, k;~v)
∣

∣d|ν|(~v)

<

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞

√

|2q|

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v)

<

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v) < +∞.

Also, by condition (6.1) with q replaced with q0, we have
∣

∣

∣

∣

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

W~e(−iq, k;~v)dν(~v)

∣

∣

∣

∣

≤
∫

Rn

∣

∣W~e(−iq, k;~v)
∣

∣d|ν|(~v)

<

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v) < +∞.

Therefore the equation (6.5) follows from (4.3), (5.7) and the dominated con-
vergence theorem. �

The following corollary follows from equations (4.4) and (6.5).

Corollary 6.2. Let q0, k, and F be as in Theorem 6.1. Then for all real q with

|q| > q0, the generalized analytic Zk-Feynman integral of F , I
anfq
k [F ] exists and

is given by the formula

I
anfq
k [F ] =

∫

Rn

W~e(−iq, k;~v)dν(~v),

where W~e(−iq, k;~v) is given by equation (5.6).
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Theorem 6.3. Let q0, k, and F be as in Theorem 6.1. Then for all p ∈ (1, 2]

and all real q with |q| > q0, the Lp analytic Zk-GFFT of F , T
(p)
q,k (F ) exists and

is given by the right hand side of equation (6.5).

Proof. It was shown in the proof of Theorem 5.4 that Tλ,k(F )(y) given by
equation (5.7) is an analytic function of λ throughout C+. In view of the
definition of the Lp analytic Zk-GFFT, it suffices to show that for each ρ > 0,

lim
λ→−iq
λ∈Γq0

∫

Ca,b[0,T ]

∣

∣Tλ,k(F )(ρy)− T
(p)
q,k (F )(ρy)

∣

∣

p′

dµ(y) = 0.

Fixing p ∈ (1, 2] and using inequalities (6.3) and (6.1) with q replaced with
q0 respectively, we obtain that for all ρ > 0 and all λ ∈ Γq0 ,

∣

∣Tλ,k(F )(ρy) − T
(p)
q,k (F )(ρy)

∣

∣

p′

≤
(∫

Rn

∣

∣

∣

∣

exp

{

iρ

n
∑

j=1

(ej , y)
∼
}∣

∣

∣

∣

{

∣

∣W~e(λ, k;~v)
∣

∣+
∣

∣W~e(−iq, k;~v)
∣

∣

}

dν(~v)

)p′

≤
(

2

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v)
)p′

< +∞.

Hence by the dominated convergence theorem, we see that for all p ∈ (1, 2] and
all ρ > 0,

lim
λ→−iq
λ∈Γq0

∫

Ca,b[0,T ]

∣

∣Tλ,k(F )(ρy)− T
(p)
q,k (F )(ρy)

∣

∣

p′

dµ(y)

=

∫

Ca,b[0,T ]

∣

∣

∣

∣

∫

Rn

exp

{

iρ

n
∑

j=1

(ej , y)
∼
}

× lim
λ→−iq
λ∈Γq0

{

W~e(λ, k;~v)−W~e(−iq, k;~v)
}

dν(~v)

∣

∣

∣

∣

p′

dµ(y)

= 0

and the theorem is established. �

Remark 6.4. Let q0, k, and F be as in Theorem 6.1. For a real number q with
|q| > q0, define a set function νq,k : B(Rn) → C by

νq,k(B) :=

∫

B

W~e(−iq, k;w)dν(w), B ∈ B(Rn),

where ν and F are related by equation (5.4). Then it is obvious that νq,k
belongs to M(Rn). In this case, by Theorems 6.1 and 6.3, and equation (6.5),

we see that for all p ∈ [1, 2], the Lp analytic Zk-GFFT of F , T
(p)
q,k (F ), can be
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expressed as

T
(p)
q,k (F )(y) =

∫

Rn

exp

{

i

n
∑

j=1

(ej , y)
∼vj

}

dνq,k(~v)

for s-a.e. y ∈ Ca,b[0, T ]. Hence T
(p)
q,k (F ) belongs to ̂TA.

7. Translation theorem

It is well known that there is no quasi-invariant measure on infinite dimen-
sional linear spaces (see for instance [30]). Thus, there is no quasi-invariant
probability measure on the function space (Ca,b[0, T ],W(Ca,b[0, T ]), µ). Based
on such circumstance, numerous constructions and applications of the transla-
tion theorem (Cameron-Martin theorem) for integrals on infinite-dimensional
spaces have been studied in various research fields in Mathematics and Physics.
The most of the results in the literature are concentrated on Wiener space.

Cameron-Martin translation theorem on classical Wiener space was intro-
duced in [4, 5]. On the other hand, Cameron and Storvick [6, 7] presented
a translation theorem for the analytic Feynman integral of functionals on the
Wiener space C0[0, T ] and Chang and Chung [15] derived a translation theorem
for function space integral of functionals on Ca,b[0, T ]. In this section, we will

present a Zk-GFFT version of the translation theorem for functionals in ̂TA.
Given q0 > 0 and k ∈ O∗(A), let F be an element of ̂T

q0,k
A , and for θ ∈

C′
a,b[0, T ] and q ∈ R \ {0}, let

(7.1) F qθ(x) := F (x) exp{−iq(θ, x)∼}.
Also, given the orthogonal set A = {e1, . . . , en} and θ ∈ C′

a,b[0, T ], let

gj = ej/‖ej‖C′

a,b
, j = 1, . . . , n,

cθj =







(θ, gj)C′

a,b
, j = 1, . . . , n

√

‖θ‖2
C′

a,b

−∑n
j=1(θ, gj)

2
C′

a,b

, j = n+ 1,

gn+1 ≡ gn+1(θ) =
1

cθn+1

[

θ −
n
∑

j=1

cθjgj

]

, if cθn+1 6= 0,

and en+1 = cθn+1gn+1. Then A ∪ {en+1} = {e1, . . . , en, en+1} is an orthogonal
set in C′

a,b[0, T ] and we obtain

θ =
n+1
∑

j=1

cθjgj =
n+1
∑

j=1

cθj
‖ej‖C′

a,b

ej .

For the complex measure ν associated with F by (5.4), let νtq,~e,θ be the
translation measure of ν defined by

νtq,~e,θ(B) := ν
(

B +
(

qcθ1/‖e1‖C′

a,b
, . . . , qcθn/‖en‖C′

a,b

)

)
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for B ∈ B(Rn), and let δ−q be the Dirac measure concentrated at −q in R.
Then it follows that

F qθ(x)

=

∫

Rn

exp

{

i

n
∑

j=1

(ej , x)
∼vj − iq

[ n+1
∑

j=1

cθj(gj , x)
∼
]}

dν(~v)

=

∫

Rn

exp

{

i

n
∑

j=1

(ej , x)
∼
[

vj −
qcθj

‖ej‖C′

a,b

]

− iqcθn+1(gn+1, x)
∼
}

dν(~v)

=

∫

Rn

exp

{

i

n
∑

j=1

(ej , x)
∼rj − iq(en+1, x)

∼
}

dνtq,~e,θ(~r)

=

∫

Rn

exp

{

i

n
∑

j=1

(ej , x)
∼rj

}[∫

R

exp
{

i(en+1, x)
∼rn+1

}

dδ−q(rn+1)

]

dνtq,~e,θ(~r)

=

∫

Rn+1

exp

{

i
n
∑

j=1

(ej , x)
∼rj + i(en+1, x)

∼rn+1

}

d(νtq,~e,θ × δ−q)(~r)

= ̂(νtq,~e,θ × δ−q)
(

(e1, x)
∼, . . . , (en, x)

∼, (en+1, x)
∼).

One can easily see that νtq,~e,θ × δ−q is an element of M(Rn+1). Thus

̂(νt
q,~e,θ

× δ−q) belongs to ̂M(Rn+1), the space of Fourier transforms of mea-

sures from M(Rn+1), and so the functional F qθ given by (7.1) is an element

of ̂TA∪{en+1}. Furthermore, for any real q with |q| > q0, F
qθ is an element of

̂T
q0,k

A∪{en+1}, because

∫

Rn+1

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n+1
∑

j=1

‖ej‖C′

a,b
|rj |

}

d
∣

∣νtq,~e,θ × δ−q

∣

∣(~r)

=

∫

R

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

‖en+1‖C′

a,b
|rn+1|

}

dδ−q(rn+1)

×
∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|rj |

}

d
∣

∣νtq,~e,θ
∣

∣(~r)

= exp

{ |q|‖a‖C′

a,b
‖Dk‖∞√

2q0
‖en+1‖C′

a,b

}

×
∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b

∣

∣

∣

∣

vj −
qcθj

‖ej‖C′

a,b

∣

∣

∣

∣

}

d|ν|(~r)

≤ exp

{ |q|‖a‖C′

a,b
‖Dk‖∞√

2q0

n+1
∑

j=1

|cθj |
}
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×
∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~r)

< +∞.

If k is an element of O∗(A ∪ {en+1}), one can evaluate the Lp analytic Zk-

GFFT, T
(p)
q,k (F

qθ), of the functional F qθ given by (7.1) in view of Theorems 6.1

and 6.3. But we cannot ensure that k ∈ O∗(A) implies k ∈ O∗(A ∪ {en+1}),
because O∗(A ∪ {en+1}) ⊂ O∗(A).

The functional F qθ given by (7.1) plays an important role in our translation
theorems for the analytic Zk-Feynman integral and the analytic Zk-GFFT of

functionals in ̂TA.

Theorem 7.1. Let q0, k, and F be as in Theorem 6.1. Let Dk = h, and given

θ ∈ C′
a,b[0, T ] with Dθ = ϕ, let x0 ∈ C′

a,b[0, T ] be given by

(7.2) x0(t) :=

∫ t

0

h(s)ϕ(s)db(s) = (k ⊙ θ)(t).

Then for all real q with |q| > q0, the generalized analytic Zk-Feynman integral

I
anfq
k [F qθ] exists. Furthermore, we have the following equality:

(7.3)

I
anfq
k,x [F (Zk(x, ·) + Zk(x0, ·))]

≡ T
(1)
q,k (F )(Zk(x0, ·))

= exp

{

iq

2
‖θ ⊙ k‖2C′

a,b

− (−iq)1/2(θ ⊙ k, a)C′

a,b

}

I
anfq
k,x [F qθ(Zk(x, ·))],

where F qθ is given by equation (7.1) above.

The following lemma will be very useful in the proof of Theorem 7.1. By
Parseval’s relation, one can obtain equations (7.4), (7.5) and (7.6) below.

Lemma 7.2. Given an orthogonal set A = {e1, . . . , en} in C′
a,b[0, T ], k ∈

O∗(A), and θ ∈ C′
a,b[0, T ], let

eθ⊙k
n+1 = cθ⊙k

n+1g
θ⊙k
n+1,

where

cθ⊙k
n+1 =

√

√

√

√‖θ ⊙ k‖2
C′

a,b

−
n
∑

j=1

(θ ⊙ k, gkj )
2
C′

a,b

,

gθ⊙k
n+1 =

1

cθ⊙k
n+1

[

θ ⊙ k −
n
∑

j=1

(θ ⊙ k, gkj )C′

a,b
gkj

]

,

and where gkj = ej ⊙ k/‖ej ⊙ k‖C′

a,b
for j = 1, . . . , n. Then

{e1 ⊙ k, . . . , en ⊙ k, eθ⊙k
n+1}
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is an orthogonal set. In this case, one can see that

θ ⊙ k =

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b

‖ej ⊙ k‖2
C′

a,b

ej ⊙ k + eθ⊙k
n+1,(7.4)

‖θ ⊙ k‖2C′

a,b

=
n
∑

j=1

(θ ⊙ k, ej ⊙ k)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

+ ‖eθ⊙k
n+1‖2C′

a,b

,(7.5)

and

(θ ⊙ k, a)C′

a,b
=

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
(θ ⊙ k, a)C′

a,b

‖ej ⊙ k‖2
C′

a,b

+ (eθ⊙k
n+1, a)C′

a,b
.(7.6)

Proof of Theorem 7.1. Using (7.1), (5.4), (3.3), Fubini’s theorem, (7.4), (2.3),
(2.5), (5.6), (7.5), and (7.6), it follows that for λ > 0,

JF qθ (Zk;λ)

(7.7)

:=

∫

Ca,b[0,T ]

F (λ−1/2Zk(x, ·)) exp{−iqλ−1/2(θ,Zk(x, ·))∼}dµ(x)

=

∫

Ca,b[0,T ]

[∫

Rn

exp

{

iλ−1/2
n
∑

j=1

(ej ⊙ k, x)∼vj

− iqλ−1/2

( n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b

‖ej ⊙ k‖2
C′

a,b

ej ⊙ k + eθ⊙k
n+1, x

)∼}

dν(~v)

]

dµ(x)

=

∫

Rn

[∫

Ca,b[0,T ]

exp

{

iλ−1/2
n
∑

j=1

(ej ⊙ k, x)∼vj

− iqλ−1/2
n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b

‖ej ⊙ k‖2
C′

a,b

(ej ⊙ k, x)∼

− iqλ−1/2(eθ⊙k
n+1, x)

∼
}

dµ(x)

]

dν(~v)

=

∫

Rn

[

(

2π‖eθ⊙k
n+1‖2C′

a,b

)−1/2
∫

R

exp

{

− iqλ−1/2u0

−
[

u0 − (eθ⊙k
n+1, a)C′

a,b

]2

2‖eθ⊙k
n+1‖2C′

a,b

}

du0

]

×
[ n
∏

j=1

(

2π‖ej ⊙ k‖2C′

a,b

)−1/2
∫

R

exp

{

iλ−1/2vjuj
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− iqλ−1/2
(θ ⊙ k, ej ⊙ k)C′

a,b

‖ej ⊙ k‖2
C′

a,b

uj −
[

uj − (ej ⊙ k, a)C′

a,b

]2

2‖ej ⊙ k‖2
C′

a,b

}

duj

]

dν(~v)

= exp

{‖eθ⊙k
n+1‖2C′

a,b

2

[

− iqλ−1/2 +
(eθ⊙k

n+1, a)C′

a,b

‖eθ⊙k
n+1‖2C′

a,b

]2

−
(eθ⊙k

n+1, a)
2
C′

a,b

2‖eθ⊙k
n+1‖2C′

a,b

}

×
∫

Rn

[ n
∏

j=1

exp

{‖ej ⊙ k‖2
C′

a,b

2

[

iλ−1/2vj − iqλ−1/2
(θ ⊙ k, ej ⊙ k)C′

a,b

‖ej ⊙ k‖2
C′

a,b

+
(θ ⊙ k, a)C′

a,b

‖ej ⊙ k‖2
C′

a,b

]2

−
(θ ⊙ k, a)2C′

a,b

2‖ej ⊙ k‖2
C′

a,b

}]

dν(~v)

= exp

{

(−iq)2

2λ
‖eθ⊙k

n+1‖2C′

a,b

+ (−iq)λ−1/2(eθ⊙k
n+1, a)C′

a,b

}

×
∫

Rn

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

− 1

2λ

n
∑

j=1

‖ej ⊙ k‖2C′

a,b

v2j + iλ−1/2
n
∑

j=1

(ej ⊙ k, a)C′

a,b
vj

+
(−iq)2

2λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

+ (−iq)λ−1/2
n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
(θ ⊙ k, a)C′

a,b

‖ej ⊙ k‖2
C′

a,b

}

dν(~v)

= exp

{

(−iq)2

2λ

[ n
∑

j=1

(θ ⊙ k, ej ⊙ k)2C′

a,b

‖ej ⊙ k‖2
C′

a,b

+ ‖eθ⊙k
n+1‖2C′

a,b

]

+ (−iq)λ−1/2

[ n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
(θ ⊙ k, a)C′

a,b

‖ej ⊙ k‖2
C′

a,b

+ (eθ⊙k
n+1, a)C′

a,b

]}

×
∫

Rn

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

}

W~e(λ, k;~v)dν(~v)

= exp

{

(−iq)2

2λ
‖θ ⊙ k‖2C′

a,b

+ (−iq)λ−1/2(θ ⊙ k, a)C′

a,b

}

×
∫

Rn

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

}

W~e(λ, k;~v)dν(~v).

Next, using the techniques similar to those used in the proof of Theorem 5.4,
one can obtain the analytic Zk-function space integral J∗

F qθ (Zk;λ) ≡ Ianλ

k [F qθ],
as a function of λ on C+, such that J∗

F qθ (Zk;λ) = JF qθ (Zk;λ) for all λ > 0.
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Let Γq0 be the domain in ˜C+ given by (6.2) and let ∆ > 1 be given. Since

−iq ∈ Γq0 for any real number q with |q| > q0, if λ → −iq in ˜C+ there exists
a real number δ > 0 such that for all λ ∈ Nδ(−iq) ∩ Γq0 (the set Nδ(−iq)
indicates the open neighborhood of −iq with radius δ in C),

(7.8)

∣

∣

∣

∣

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

}∣

∣

∣

∣

< ∆.

Hence, in the last expression of (7.7), we observe that for all λ ∈ Nδ(−iq)∩Γq0 ,

∣

∣

∣

∣

∫

Rn

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

}

W~e(λ, k;~v)dν(~v)

∣

∣

∣

∣

≤
∫

Rn

∣

∣

∣

∣

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

}∣

∣

∣

∣

∣

∣W~e(λ, k;~v)
∣

∣d|ν|(~v)

≤ ∆

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v)

< +∞

by the inequalities (7.8) and (6.3) above. Thus, by the dominated convergence
theorem, (7.2), (3.3) and (6.5), it follows that for real q with |q| > q0,

(7.9)

I
anfq
k [F qθ] = lim

λ→−iq
λ∈Γq0

Ianλ

k [F qθ]

= lim
λ→−iq
λ∈Γq0

exp

{

(−iq)2

2λ
‖θ ⊙ k‖2C′

a,b

+ (−iq)λ−1/2(θ ⊙ k, a)C′

a,b

}

×
∫

Rn

exp

{

i(−iq)

λ

n
∑

j=1

(θ ⊙ k, ej ⊙ k)C′

a,b
vj

}

W~e(λ, k;~v)dν(~v)

= exp

{

− iq

2
‖θ ⊙ k‖2C′

a,b

+ (−iq)1/2(θ ⊙ k, a)C′

a,b

}

×
∫

Rn

exp

{

i
n
∑

j=1

(ej ⊙ k, x0)C′

a,b
vj

}

W~e(−iq, k;~v)dν(~v)

= exp

{

− iq

2
‖θ ⊙ k‖2C′

a,b

+ (−iq)1/2(θ ⊙ k, a)C′

a,b

}

T
(1)
q,k (F )(Zk(x0, ·)).

Thus, the generalized analytic Zk-Feynman integral I
anfq
k [F qθ ] exists. Equa-

tions (4.3) with y replaced with Zk(x0, ·) and (7.9) yield the equation (7.3). �
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Theorem 7.3. Let q0, k, F , θ, and x0 be as in Theorem 7.1. Then for all real

q with |q| > q0 and s-a.e. y ∈ Ca,b[0, T ],

T
(1)
q,k (F )(y + Zk(x0, ·))

(7.10)

= exp

{

iq

2
‖θ ⊙ k‖2C′

a,b

− (−iq)1/2(θ ⊙ k, a)C′

a,b
+ iq(θ, y)∼

}

T
(1)
q,k (F

qθ)(y),

where F qθ is given by equation (7.1) above.

Proof. By Theorem 6.1, the analytic Zk-GFFT on the left hand side of equation
(7.10) exists.

Given y ∈ Ca,b[0, T ], let

(7.11) Gy(x) = F (y + x).

Clearly, for the complex measure ν associated with F by (5.4), the set function
νy : B(Rn) → C given by νy(B) =

∫

B
exp{i∑n

j=1(ej , y)
∼vj}dν(~v) is an element

of M(Rn). From this, we see that

(7.12) Gy(x) =

∫

Rn

exp

{

i

n
∑

j=1

(ej , x)
∼vj

}

dνy(~v)

for s-a.e. x ∈ Ca,b[0, T ], and that Gy belongs to ̂TA. We also observe that
given y ∈ Ca,b[0, T ],

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|νy|(~v)

=

∫

Rn

exp

{‖a‖C′

a,b
‖Dk‖∞√
2q0

n
∑

j=1

‖ej‖C′

a,b
|vj |

}

d|ν|(~v) < +∞,

and that Gy is an element of ̂T q0,k
A .

Next let

(7.13) Gqθ
y (x) = Gy(x) exp{−iq(θ, x)∼}.

Then, using (4.3) with F replaced with F qθ, (7.1), (7.12) and (7.13), we obtain
the equation

(7.14)
T

(1)
q,k (F

qθ)(y) = I
anfq
k,x [F qθ(y + Zk(x, ·))]

= exp{−iq(θ, y)∼}Ianfqk,x [Gqθ
y (Zk(x, ·))].

Since Gy is an element of ̂T q0,k
A , applying Theorem 7.1 with Gy instead of F ,

we guarantee the existence of the analytic Zk-GFFT T
(1)
q,k (F

qθ) of F qθ.
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Now, we need only to verify the equality in equation (7.10). But, applying
equations (4.3), (7.11), (7.3) with F and F qθ replaced with Gy and Gqθ

y respec-
tively, and (7.14), it follows that for real q with |q| > q0 and s-a.e. y ∈ Ca,b[0, T ],

T
(1)
q,k (F )(y + Zk(x0, ·))

= I
anfq
k,x [Gy(Zk(x, ·) + Zk(x0, ·))]

= exp

{

iq

2
‖θ ⊙ k‖C′

a,b
− (−iq)1/2(θ ⊙ k, a)C′

a,b

}

I
anfq
k,x [Gqθ

y (Zk(x, ·))]

= exp

{

iq

2
‖θ ⊙ k‖C′

a,b
− (−iq)1/2(θ ⊙ k, a)C′

a,b
+ iq(θ, y)∼

}

× I
anfq
k,x [exp{−iq(θ, y)∼}Gqθ

y (Zk(x, ·))]

= exp

{

iq

2
‖θ ⊙ k‖C′

a,b
− (−iq)1/2(θ ⊙ k, a)C′

a,b
+ iq(θ, y)∼

}

T
(1)
q,k (F

qθ)(y)

as desired. �

Remark 7.4. In view of Theorem 6.3, it also follows that for all p ∈ (1, 2] and
for s-a.e. y ∈ Ca,b[0, T ],

T
(p)
q,k (F )(y + Zk(x0, ·))

= T
(1)
q,k (F )(y + Zk(x0, ·))

= exp

{

iq

2
‖θ ⊙ k‖2C′

a,b

− (−iq)1/2(θ ⊙ k, a)C′

a,b
+ iq(θ, y)∼

}

T
(p)
q,k (F

qθ)(y).
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