Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.5.1105

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE  

Cho, Dong Hyun (Department of Mathematics Kyonggi University)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.5, 2013 , pp. 1105-1127 More about this Journal
Abstract
Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.
Keywords
analogue of Wiener space; analytic conditional Feynman integral; analytic conditional Fourier-Feynman transform; analytic conditional Wiener integral; conditional convolution product; Wiener space;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), no. 2, 381-394.   DOI
2 K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951.   DOI   ScienceOn
3 K. S. Ryu, M. K. Im, and K. S. Choi, Survey of the theories for analogue of Wiener measure space, Interdiscip. Inform. Sci. 15 (2009), no. 3, 319-337.
4 D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J. 59 (2009), no. 2, 431-452.   DOI
5 D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811.   DOI   ScienceOn
6 D. H. Cho, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an $L_p$ theory, J. Korean Math. Soc. 41 (2004), no. 2, 265-294.   과학기술학회마을   DOI   ScienceOn
7 D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438.   DOI   ScienceOn
8 T. Huffman, C. Park, and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), no. 2, 247-261.   DOI
9 G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: an L $(L_p,L_p{\prime})$ theory, Nagoya Math. J. 60 (1976), 93-137.
10 M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819.   과학기술학회마을   DOI   ScienceOn
11 M. J. Kim, Conditional Fourier-Feynman transform and convolution product on a func- tion space, Int. J. Math. Anal. 3 (2009), no. 10, 457-471.
12 B. J. Kim, B. S. Kim, and D. Skoug, Conditional integral transforms, conditional convolution products and first variations, Panamer. Math. J. 14 (2004), no. 3, 27-47.
13 C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.   과학기술학회마을
14 M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.
15 R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.
16 K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235.   DOI   ScienceOn
17 S. J. Chang and D. M. Chung, A class of conditional Wiener integrals, J. Korean Math. Soc. 30 (1993), no. 1, 161-172.
18 D. H. Cho, A time-independent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Honam Math. J. (2013), submitted.   과학기술학회마을   DOI   ScienceOn
19 S. J. Chang and D. Skoug, The effect of drift on conditional Fourier-Feynman trans- forms and conditional convolution products, Int. J. Appl. Math. 2 (2000), no. 4, 505-527.
20 S. J. Chang and D. Skoug, The effect of drift on the Fourier-Feynman transform, the convolution product and the first variation, Panamer. Math. J. 10 (2000), no. 2, 25-38.
21 D. H. Cho, A time-dependent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Houston J. Math. (2012), submitted.
22 D. H. Cho, Conditional integral transforms and convolutions of bounded functions on an analogue of Wiener space, J. Chungcheong Math. Soc. (2012), to appear.
23 D. H. Cho, Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Spec. Funct. 23 (2012), no. 6, 405-420.   DOI