• Title/Summary/Keyword: F0 function

Search Result 1,071, Processing Time 0.021 seconds

THE ITERATION OF ENTIRE FUNCTION

  • Sun, Jianwu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.369-378
    • /
    • 2001
  • In this paper, we obtain the following results: Let f be a transcendental entire function with log M(r,f)=$O(log r)^\beta (e^{log r}^\alpha)\; (0\leq\alpha<1,\beta>1$). Then every component of N(f) is bounded. This result generalizes the result of Baker.

  • PDF

ZERO DISTRIBUTION OF SOME DELAY-DIFFERENTIAL POLYNOMIALS

  • Laine, Ilpo;Latreuch, Zinelaabidine
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1541-1565
    • /
    • 2020
  • Let f be a meromorphic function of finite order ρ with few poles in the sense Sλ(r, f) := O(rλ+ε) + S(r, f), where λ < ρ and ε ∈ (0, ρ - λ), and let g(f) := Σkj=1bj(z)f(kj)(z + cj) be a linear delay-differential polynomial of f with small meromorphic coefficients bj in the sense Sλ(r, f). The zero distribution of fn(g(f))s - b0 is considered in this paper, where b0 is a small function in the sense Sλ(r, f).

Convolution product and generalized analytic Fourier-Feynman transforms

  • Chang, Seung-Jun
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.707-723
    • /
    • 1996
  • We first define the concept of the generalized analytic Fourier-Feynman transforms of a class of functionals on function space induced by a generalized Brownian motion process and study of functionals which plays on important role in physical problem of the form $ F(x) = {\int^{T}_{0} f(t, x(t))dt} $ where f is a complex-valued function on $[0, T] \times R$. We next show that the generalized analytic Fourier-Feynman transform of the convolution product is a product of generalized analytic Fourier-Feynman transform of functionals on functin space.

  • PDF

THE EXTENSION OF THE SUFFICIENT CONDITION FOR UNIVALENCE

  • An, Jong-Su
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.141-148
    • /
    • 1995
  • In this paper we shall consider function p(z) analytic in the open unit circle D and the solutions y(z) of the differential equation y"(Z) + p(z)y(z) = 0. (1.1) The ratio f(z) = u(z)/v(z) of any two independent solutions u(z) and v(z) of (1.1) will be function f(z), meromorphic in D with only simple poles, and such that f'(z) (equation omitted) 0. We shall say that a meromorphic function which satisfies these two condition belongs to the restricted class.(omitted)

  • PDF

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE

  • Chen, Min Feng;Gao, Zong Sheng
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.361-373
    • /
    • 2017
  • In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of $Br{\ddot{u}}ck$ conjecture. In other words, we consider ${\Delta}_{\eta}f(z)=f(z+{\eta})-f(z)$ and f'(z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where ${\eta}{\in}{\mathbb{C}}{\backslash}\{0\}$ is a constant such that $f(z+{\eta})-f(z){\not\equiv}0$.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.

INEQUALITIES FOR THE NON-TANGENTIAL DERIVATIVE AT THE BOUNDARY FOR HOLOMORPHIC FUNCTION

  • Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.439-449
    • /
    • 2014
  • In this paper, we present some inequalities for the non-tangential derivative of f(z). For the function $f(z)=z+b_{p+1}z^{p+1}+b_{p+2}z^{p+2}+{\cdots}$ defined in the unit disc, with ${\Re}\(\frac{f^{\prime}(z)}{{\lambda}f{\prime}(z)+1-{\lambda}}\)$ > ${\beta}$, $0{\leq}{\beta}$ < 1, $0{\leq}{\lambda}$ < 1, we estimate a module of a second non-tangential derivative of f(z) function at the boundary point ${\xi}$, by taking into account their first nonzero two Maclaurin coefficients. The sharpness of these estimates is also proved.

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.