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SOME RESULTS ON COMPLEX

DIFFERENTIAL-DIFFERENCE ANALOGUE OF

BRÜCK CONJECTURE

Min Feng Chen and Zong Sheng Gao

Abstract. In this paper, we utilize the Nevanlinna theory and unique-
ness theory of meromorphic function to investigate the differential-diff-
erence analogue of Brück conjecture. In other words, we consider
∆ηf(z) = f(z+η)−f(z) and f ′(z) share one value or one small function,
and then obtain the precise expression of transcendental entire function
f(z) under certain conditions, where η ∈ C \ {0} is a constant such that
f(z + η) − f(z) 6≡ 0.

1. Introduction and results

In this paper, we assume that the reader is familiar with the standard sym-
bols and fundamental results of Nevanlinna theory [9, 11]. In addition, we use
notations λ(f) and σ(f) to denote the exponent of convergence of the zero-
sequence and the order of growth of meromorphic function f(z) respectively.

Let f(z) and g(z) be two nonconstant meromorphic functions, and let a be
a complex number in the extended complex plane. We say that f(z) and g(z)
share a CM (IM) provided that f(z) and g(z) have the same a-points counting
multiplicities (ignoring multiplicities).

In 1996, Brück [2] posed a well-known conjecture.

Conjecture (See [2]). Let f(z) be a nonconstant entire function with hyper-

order σ2(f) < ∞, and σ2(f) be not a positive integer. If f(z) and f ′(z) share

the finite value a CM, then

f ′(z)− a

f(z)− a
= c,

where c is a nonzero constant.
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The conjecture has been verified in the special cases when a = 0 (see [2]),
or when f(z) is an entire function of finite order (see [7]).

Recently, some results on difference analogues of Brück conjecture were con-
sidered in [3, 4, 10, 12, 13, 14]. Here, we recall the following results.

Theorem A (See [10]). Let f(z) be a meromorphic function of σ(f) < 2, and
η be a non-zero constant. If f(z) and f(z + η) share the finite value a and ∞
CM, then

f(z + η)− a

f(z)− a
= τ

for some constant τ .

In [10], Heittokangas et al. gave the example f(z) = ez
2

+ 1 which shows
that σ(f) < 2 can not be relaxed to σ(f) ≤ 2.

It is well-known that ∆ηf(z) = f(z+η)−f(z) (where η ∈ C\{0} is a constant
such that f(z+η)−f(z) 6≡ 0) is regarded as the difference counterpart of f ′(z).
For a transcendental entire function f(z) of finite order which has a finite Borel
exceptional value, Chen and Yi [4] and Chen [3] considered the problem that
∆ηf(z) and f(z) shared one finite value CM and obtained the following results.

Theorem B (See [4]). Let f(z) be a finite order transcendental entire function

which has a finite Borel exceptional value a, and let η be a constant such that

f(z + η) 6≡ f(z). If ∆ηf(z) and f(z) share a CM, then

a = 0 and
f(z + η)− f(z)

f(z)
= c

for some constant c.

Theorem C (See [3]). Let f(z) be a transcendental entire function of finite

order that is of a finite Borel exceptional value α, and η ∈ C be a constant such

that f(z + η) 6≡ f(z). If ∆ηf(z) = f(z + η)− f(z) and f(z) share a(6= α) CM,

then
∆ηf(z)− a

f(z)− a
=

a

a− α
.

Most recently, Liu and Dong [15] considered the differential-difference ana-
logue of Brück conjecture and obtained the following result.

Theorem D (See [15]). Suppose that f(z) is an entire solution of equation

f ′(z)− a(z) = eP (z)(f(z + c)− a(z)),

where c ∈ C \ {0} is a constant, P (z) is a polynomial and a(z) is an entire

function with σ(a) < σ(f). If λ(f − a) < σ(f), then σ(f) = 1 + degP (z).

In this paper, we consider ∆ηf(z) and f ′(z) share one value or one small
function, and obtain more precise results than Theorem D in the following.
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Theorem 1.1. Let f(z) be a transcendental entire function of finite order,

η ∈ C \ {0} be a constant such that ∆ηf(z) = f(z + η)− f(z) 6≡ 0, a(z) be an

entire function such that σ(a) < 1 and λ(f − a) < σ(f). If ∆ηf(z) and f ′(z)
share a(z) CM, then one of the following two cases holds:

(i) If a(z) 6≡ 0, then

∆ηf(z)− a(z)

f ′(z)− a(z)
= 1 and f(z) = a(z) +H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1 and c ∈ C \ {0}
is a constant satisfying ecη = 1 + c.

(ii) If a(z) ≡ 0, then

∆ηf(z)

f ′(z)
= A and f(z) = H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1, A, c ∈ C \ {0}
are constants satisfying ecη = 1 +Ac.

Theorem 1.2. Let f(z) be a transcendental entire function of finite order, η be

a non-zero constant such that ∆ηf(z) = f(z + η)− f(z) 6≡ 0, b(z) be an entire

function such that σ(b) < 1 and λ(f − b) < σ(f). If ∆ηf(z) and f ′(z) share

a(z) CM, where a(z) is an entire function satisfying σ(a) < 1 and a(z) 6≡ b′(z),
then

∆ηf(z)− a(z)

f ′(z)− a(z)
= A and f(z) = b(z) +H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1, A, c ∈ C \ {0}
are constants satisfying ecη = 1 +Ac.

Remark 1.1. From the conditions of Theorem 1.2, we see that a(z) 6≡ b′(z), if
a(z) ≡ b(z), then a(z) 6≡ 0, which is the case (i) of Theorem 1.1. In Theorem
1.2, if b(z) ≡ b and a(z) ≡ a or b′(z) 6≡ 0 and a(z) ≡ 0, the following corollaries
can be obtained.

Corollary 1.1. Let f(z) be a transcendental entire function of finite order

which has a finite Borel exceptional b, η be a non-zero constant such that

∆ηf(z) = f(z + η)− f(z) 6≡ 0. If ∆ηf(z) and f ′(z) share a(6= 0) CM, then

∆ηf(z)− a

f ′(z)− a
= A and f(z) = b+H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1, A, c ∈ C \ {0}
are constants satisfying ecη = 1 +Ac.

Remark 1.2. From Corollary 1.1, if a = b(6= 0), which is also a special case in
Theorem 1.1 when a(z) ≡ a(6= 0).

Corollary 1.2. Let f(z) be a transcendental entire function of finite order,

η be a non-zero constant such that ∆ηf(z) = f(z + η) − f(z) 6≡ 0, b(z) be a
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nonconstant entire function such that σ(b) < 1 and λ(f − b) < σ(f). If ∆ηf(z)
and f ′(z) share 0 CM, then

∆ηf(z)

f ′(z)
= A and f(z) = b(z) +H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1, A, c ∈ C \ {0}
are constants satisfying ecη = 1 +Ac.

Remark 1.3. From the conditions of Corollary 1.2, we know that b′(z) 6≡ 0. If
b′(z) ≡ 0, namely, b(z) is a constant, then Corollary 1.2 is still valid according
to the following Lemma 2.5.

Example 1.1. Suppose that f(z) = z + ecz, where c ∈ C \ {0} is a constant.
Then λ(f − z) < σ(f). Let η = 1 and c satisfy ec = 1 + c, we see that

∆ηf(z) = 1 + cecz = f ′(z). Then
∆ηf(z)−z

f ′(z)−z
= 1, that is, ∆ηf(z) and f ′(z)

share z CM.

Example 1.2. Suppose that f(z) = ecz, where c ∈ C \ {0} is a constant.
Then λ(f) < σ(f). Let η = log 2 and c satisfy 2c = 1 + 2c, we see that

∆ηf(z) = 2cecz = 2f ′(z). Then
∆ηf(z)

f ′(z)
= 2, that is, ∆ηf(z) and f ′(z) share 0

CM.

Example 1.3. Suppose that f(z) = z2 + ecz, where c ∈ C \ {0} is a constant.
Then λ(f − z2) < σ(f). Let η = 1 and c satisfy ec = 1 + 1

2
c, we see that

∆ηf(z) = 2z + 1+ 1

2
cecz and f ′(z) = 2z + cecz. Then

∆ηf(z)−2(z+1)

f ′(z)−2(z+1)
= 1

2
, that

is, ∆ηf(z) and f ′(z) share 2(z + 1)(6≡ 2z) CM.

2. Lemmas for the proof of Theorems

Lemma 2.1 (See [16, p. 77]). Suppose that fj(z) (j = 1, 2, . . . , n + 1) and

gj(z) (j = 1, 2, . . . , n) (n ≥ 1) are entire functions satisfying:

(i)
n
∑

j=1

fj(z)e
gj(z) ≡ fn+1(z).

(ii) The order of fj(z) is less than the order of egk(z) for 1 ≤ j ≤ n + 1,
1 ≤ k ≤ n. And furthermore, the order of fj(z) is less than the order of

egh(z)−gk(z) for n ≥ 2 and 1 ≤ j ≤ n+ 1, 1 ≤ h < k ≤ n.
Then fj(z) ≡ 0, (j = 1, 2, . . . , n+ 1).

ε-set. Following Hayman [8, pp. 75–76], we define an ε-set to be a countable
union of open discs not containing the origin and subtending angles at the origin
whose sum is finite. If E is an ε-set, then the set of r ≥ 1 for which the circle
S(0, r) meets E has finite logarithmic measure, and for almost all real θ the
intersection of E with the ray arg z = θ is bounded.
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Lemma 2.2 (See [1, Lemma 3.3]). Let f(z) be a transcendental meromorphic

function of order σ(f) < 1. Let h > 0. Then there exists an ε-set E such that

f ′(z + c)

f(z + c)
→ 0 and

f(z + c)

f(z)
→ 1 as z → ∞ in C \ E,

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z 6∈ E,

the function f(z) has no zeros or poles on |ζ − z| ≤ h.

Lemma 2.3 (See [6, Corollary 2]). Let f(z) be a transcendental meromorphic

function of finite order σ, k, j (k > j ≥ 0) be integers. Then for any given

ε > 0, there exists a set E ⊂ (1,∞) of finite logarithmic measure, such that for

all z satisfying |z| = r 6∈ [0, 1] ∪E, we have
∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ |z|(k−j)(σ−1+ε).

Lemma 2.4 (See [5, Theorem 8.2]). Let f(z) be a meromorphic function of

finite order σ, η be a non-zero complex number, and ε > 0 be given real con-

stants, then there exists a subset E ⊂ (1,∞) of finite logarithmic measure such

that for all |z| = r 6∈ [0, 1] ∪ E, we have

exp{−rσ−1+ε} ≤

∣

∣

∣

∣

f(z + η)

f(z)

∣

∣

∣

∣

≤ exp{rσ−1+ε}.

Lemma 2.5. Let f(z) be a transcendental entire function of finite order which

has a finite Borel exceptional b, η ∈ C \ {0} be a constant such that ∆ηf(z) =
f(z + η)− f(z) 6≡ 0. If ∆ηf(z) and f ′(z) share 0 CM, then

∆ηf(z)

f ′(z)
= A and f(z) = b+H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1, A, c ∈ C \ {0}
are constants satisfying ecη = 1 +Ac.

Proof. Since f(z) has a Borel exceptional b, by the Hadamard’s factorization
theorem [16, Theorem 2.5], we obtain

(2.1) f(z) = b+ h(z)eQ(z),

where h(z)(6≡ 0) is an entire function, Q(z) is a polynomial such that

(2.2) σ(h) = λ(h) = λ(f − b) < σ(f) = degQ(z).

Furthermore, ∆ηf(z) and f ′(z) share 0 CM, we have

(2.3)
∆ηf(z)

f ′(z)
= eP (z),

where P (z) is a polynomial. It follows from (2.2) and (2.3) that

(2.4) degP (z) ≤ degQ(z).
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Substituting (2.1) into (2.3) yields

(2.5) h(z + η)eQ(z+η)−Q(z) − h(z) = (h′(z) + h(z)Q′(z))eP (z).

In what follows, we assume that P (z) 6≡ 0 and degP (z) = p, we discuss two
cases: 1 ≤ degP (z) = degQ(z) and 0 ≤ degP (z) < degQ(z). Denote

(2.6) P (z) = apz
p+ ap−1z

p−1 + · · ·+ a0, Q(z) = bqz
q + bq−1z

q−1 + · · ·+ b0,

where ap(6= 0), . . . , a0, bq(6= 0), . . . , b0 are constants, q = σ(f) ≥ 1 is an integer.
Case 1. 1 ≤ p = q. Since deg(Q(z + η) − Q(z)) = q − 1, h(z) 6≡ 0 and

σ(h) < q, then h′(z) + h(z)Q′(z) 6≡ 0, we see that the order of growth of the
left side of (2.5) is less than q, and the order of growth of the right side of (2.5)
is q. This is a contradiction.

Case 2. 0 ≤ p < q. If 0 ≤ p < q − 1, then (2.5) can be rewritten as

(2.7) eQ(z+η)−Q(z) =

[

1 +

(

h′(z)

h(z)
+Q′(z)

)

eP (z)

]

h(z)

h(z + η)
.

If σ(h) < 1, since deg(Q(z + η) −Q(z)) = q − 1 ≥ 1 and degP (z) < q − 1, we
know that the order of growth of the left side of (2.7) is q − 1, and the order
of growth of the right side of (2.7) is less than q − 1, a contradiction. Then we
have σ(h) ≥ 1.

By Lemma 2.3, for any given ε1 > 0, there exists a set E1 ⊂ (1,∞) of finite
logarithmic measure, such that for all z satisfying |z| = r 6∈ [0, 1]∪E1, we have

(2.8)

∣

∣

∣

∣

h′(z)

h(z)

∣

∣

∣

∣

≤ |z|σ(h)−1+ε1 .

By Lemma 2.4, for any given ε2 > 0, there exists a set E2 ⊂ (1,∞) of finite
logarithmic measure, such that for all z satisfying |z| = r 6∈ [0, 1]∪E2, we have

(2.9) exp{−rσ(h)−1+ε2} ≤

∣

∣

∣

∣

h(z + η)

h(z)

∣

∣

∣

∣

≤ exp{rσ(h)−1+ε2}.

Set ε = max{ε1, ε2}
(

0 < ε < min
{

q−σ(h)

3
, q−1−p

3

})

, there exists r0 > 0 such

that for all z satisfying |z| = r > r0, we have

(2.10) rq−1−ε ≤ |Q′(z)| ≤ rq−1+ε and |eP (z)| ≤ exp{rp+ε}.

From (2.7), we see that
[

1 +
(

h′
(z)

h(z)
+Q′(z)

)

eP (z)
]

h(z)

h(z+η)
is an entire function.

Then for all z satisfying |z| = r > r0 and |z| = r 6∈ [0, 1] ∪ E1 ∪ E2, by (2.8)-
(2.10), we have

∣

∣

∣

∣

[

1 +

(

h′(z)

h(z)
+Q′(z)

)

eP (z)

]

h(z)

h(z + η)

∣

∣

∣

∣

≤

[

1 +

(∣

∣

∣

∣

h′(z)

h(z)

∣

∣

∣

∣

+ |Q′(z)|

)

|eP (z)|

] ∣

∣

∣

∣

h(z)

h(z + η)

∣

∣

∣

∣

≤ (1 + (rσ(h)−1+ε + rq−1+ε) exp{rp+ε}) exp{rσ(h)−1+ε}

≤ rσ(h)+q−2+2ε exp{rp+ε + rσ(h)−1+ε} < exp{rq−1};
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that is,

T

(

r,

[

1 +

(

h′(z)

h(z)
+Q′(z)

)

eP (z)

]

h(z)

h(z + η)

)

= m

(

r,

[

1 +

(

h′(z)

h(z)
+Q′(z)

)

eP (z)

]

h(z)

h(z + η)

)

< rq−1.

The above inequality yields that

σ

([

1 +

(

h′(z)

h(z)
+Q′(z)

)

eP (z)

]

h(z)

h(z + η)

)

< q − 1.

It follows from deg(Q(z + η)−Q(z)) = q − 1 that (2.7) is a contradiction.
Then we must have q − 1 = p ≥ 0. We claim that q − 1 = p = 0, otherwise

q − 1 = p ≥ 1. It follows from (2.6) that

(2.11) P (z) = aq−1z
q−1 + Pq−2(z), Q(z + η)−Q(z) = qηbqz

q−1 +Qq−2(z),

where aq−1(6= 0), bq(6= 0) are constants, Pq−2(z), Qq−2(z) are polynomials,
degPq−2(z) ≤ q − 2, degQq−2(z) ≤ q − 2. In what follows, we consider two
subcases: 2.1, aq−1 = qηbq; 2.2, aq−1 6= qηbq.

Subcase 2.1. If aq−1 = qηbq, then (2.5) can be rewritten as

(2.12) e−P (z) =
h(z + η)

h(z)
eQ(z+η)−Q(z)−P (z) −

(

h′(z)

h(z)
+Q′(z)

)

.

It follows from aq−1 = qηbq that deg(Q(z+ η)−Q(z)−P (z)) = deg(Qq−2(z)−
Pq−2(z)) ≤ q − 2. Using the same method as above, we can obtain that

σ

(

h(z + η)

h(z)
eQ(z+η)−Q(z)−P (z) −

(

h′(z)

h(z)
+Q′(z)

))

< q − 1.

It follows from deg(−P (z)) = q − 1 ≥ 1 that (2.12) is a contradiction.
Subcase 2.2. If aq−1 6= qηbq, it follows from (2.5) and (2.11) that

(2.13)
(

h′(z)

h(z)
+Q′(z)

)

eaq−1z
q−1

=
h(z + η)

h(z)
eqηbqz

q−1
+Qq−2(z)−Pq−2(z) − e−Pq−2(z).

Without loss of generality, we assume that q|ηbq| ≤ |aq−1|. Set arg aq−1 = θ1
and arg(ηbq) = θ2. For the above given ε and for all z satisfying |z| = r > r1
and |z| = r 6∈ [0, 1] ∪ E1 ∪ E2, z = reiθ0 , where θ0 is a real constant such that
cos((q − 1)θ0 + θ1) = 1, by (2.8)-(2.10), we have

∣

∣

∣

∣

(

h′(z)

h(z)
+Q′(z)

)

eaq−1z
q−1

∣

∣

∣

∣

≥

(

|Q′(z)| −

∣

∣

∣

∣

h′(z)

h(z)

∣

∣

∣

∣

)

|eaq−1z
q−1

|

≥ (rq−1−ε − rσ(h)−1+ε) exp{|aq−1|r
q−1}

≥ rq−1−2ε(1 + o(1)) exp{|aq−1|r
q−1}

≥ exp{|aq−1|r
q−1},
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and
∣

∣

∣

∣

h(z + η)

h(z)
eqηbqz

q−1
+Qq−2(z)−Pq−2(z) − e−Pq−2(z)

∣

∣

∣

∣

≤

∣

∣

∣

∣

h(z + η)

h(z)

∣

∣

∣

∣

|eqηbqz
q−1

+Qq−2(z)−Pq−2(z)|+ |e−Pq−2(z)|

≤ exp{rσ(h)−1+ε} exp{q|ηbq| cos((q − 1)θ0 + θ2)r
q−1 +O(rq−2)}

≤ exp{q|ηbq| cos((q − 1)θ0 + θ2)r
q−1 + o(rq−1)},

that is,

(2.14) exp{|aq−1|r
q−1} ≤ exp{q|ηbq| cos((q − 1)θ0 + θ2)r

q−1 + o(rq−1)}.

We claim that q|ηbq| cos((q − 1)θ0 + θ2) < |aq−1|. In fact, if q|ηbq| = |aq−1|, it
follows from aq−1 6= qηbq that cos((q−1)θ0+θ2) 6= 1, then cos((q−1)θ0+θ2) < 1.
Thus q|ηbq| cos((q − 1)θ0 + θ2) < q|ηbq| = |aq−1|. If q|ηbq| < |aq−1|, then
q|ηbq| cos((q − 1)θ0 + θ2) ≤ q|ηbq| < |aq−1|.

For any given ε3

(

0 <ε3<
|aq−1|−q|ηbq | cos((q−1)θ0+θ2)

3

)

, it follows from (2.14)

that

exp{|aq−1|r
q−1} ≤ exp{q|ηbq| cos((q − 1)θ0 + θ2)r

q−1 + o(rq−1)}

< exp{(|aq−1| − ε3)r
q−1}.

This is a contradiction.
Thus, we must have q − 1 = p = 0, that is p = 0 and q = 1. Then eP (z)

is a nonzero constant and f(z) = b + H(z)ecz, where H(z)(6≡ 0) is an entire
function with λ(H) = σ(H) < 1, c ∈ C \ {0} is a constant. Set eP (z) ≡ A, then
(2.5) can be rewritten as

(2.15)
h(z + η)

h(z)
ecη = 1 +

(

h′(z)

h(z)
+ c

)

A,

where A, c, η are non-zero constants. If h(z)(6≡ 0) is a polynomial, then

(2.16)
h′(z)

h(z)
→ 0,

h(z + η)

h(z)
→ 1, z → ∞.

It follows from (2.15) and (2.16) that ecη = 1+Ac. If h(z)(6≡ 0) is a transcen-
dental entire function with σ(h) < 1, by Lemma 2.2, we also have ecη = 1+Ac.

If P (z) ≡ 0, then eP (z) ≡ 1. Using the same method as in the proof of Case
2, we obtain that f(z) = b + H(z)ecz, where H(z)(6≡ 0) is an entire function
with λ(H) = σ(H) < 1, c ∈ C \ {0} is a constant satisfying ecη = 1 + c. �

3. Proofs of Theorems

Proof of Theorem 1.1. Now we suppose that a(z) 6≡ 0. By the Hadamard’s
factorization theorem [16, Theorem 2.5] and λ(f − a) < σ(f), we obtain

(3.1) f(z) = a(z) + h(z)eQ(z),
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where h(z) is a non-zero entire function, Q(z) is a polynomial, and h(z), Q(z)
satisfy

(3.2) σ(h) = λ(h) = λ(f − a) < σ(f) = degQ(z).

Since ∆ηf(z) and f ′(z) share a(z) CM, we have

(3.3)
∆ηf(z)− a(z)

f ′(z)− a(z)
= eP (z),

where P (z) is a polynomial. It follows from (3.2) and (3.3) that

(3.4) degP (z) ≤ degQ(z).

Substituting (3.1) into (3.3) yields
(3.5)

h(z+η)eQ(z+η)−Q(z)−h(z)+c(z)e−Q(z) = (h′(z)+h(z)Q′(z)+d(z)e−Q(z))eP (z),

where c(z) = a(z + η)− 2a(z) and d(z) = a′(z)− a(z). Since σ(a) < 1, we see
that max{σ(c), σ(d)} < 1.

In what follows, we consider two cases: 1 ≤ degP (z) < degQ(z) and
degP (z) = degQ(z). Set

P (z) = apz
p + ap−1z

p−1 + · · ·+ a0, Q(z) = bqz
q + bq−1z

q−1 + · · ·+ b0,

where ap(6= 0), . . . , a0, bq(6= 0), . . . , b0 are constants, p, q are positive integers.
Case 1. Suppose that 1 ≤ p < q, then (3.5) can be rewritten as

(3.6)

h(z+η)eQ(z+η)−Q(z)−h(z)−(h′(z)+h(z)Q′(z))eP (z) = (d(z)eP (z)−c(z))e−Q(z).

It follows from a(z) 6≡ 0 and σ(a) < 1 that d(z) = a′(z) − a(z) 6≡ 0. If

d(z)eP (z) − c(z) ≡ 0, then we have eP (z) = c(z)

d(z)
. By max{σ(c), σ(d)} < 1, we

see that σ(eP (z)) ≤ max{σ(c), σ(d)} < 1, which contradicts with σ(eP (z)) =
degP (z) = p ≥ 1. Hence, we must have d(z)eP (z) − c(z) 6≡ 0. Since σ(h) < q,
deg(Q(z+ η)−Q(z)) = q− 1 and σ(eP (z)) = degP (z) = p < q, we see that the
order of growth of the left side of (3.6) is less than q, and the order of growth
of the right side of (3.6) is q. This is a contradiction.

Case 2. Suppose that p = q. For aq and bq, we consider three subcases:
2.1, aq = bq; 2.2, aq = −bq; 2.3, aq 6= bq and aq 6= −bq.

Subcase 2.1. Suppose that aq = bq, then (3.5) can be rewritten as

(3.7)
(h′(z) + h(z)Q′(z))eP (z) − c(z)e−Q(z)

= h(z + η)eQ(z+η)−Q(z) − h(z)− d(z)eP (z)−Q(z).

Since σ(h) < q, deg(Q(z + η) − Q(z)) = q − 1, max{σ(c), σ(d)} < 1 ≤ q
and deg(P (z)−Q(z)) ≤ q − 1, we have σ(h′(z) + h(z)Q′(z)) < q and σ(h(z +
η)eQ(z+η)−Q(z) − h(z)− d(z)eP (z)−Q(z)) < q.

Note that eP (z), e−Q(z) and eP (z)+Q(z) are of regular growth, and σ(eP (z)) =
σ(e−Q(z)) = σ(eP (z)+Q(z)) = q, it follows from Lemma 2.1 and (3.7) that

h′(z) + h(z)Q′(z) ≡ 0 and c(z) = a(z + η)− 2a(z) ≡ 0.
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If h′(z) + h(z)Q′(z) ≡ 0, then h(z) ≡ 0 or h(z) = ce−Q(z), c ∈ C \ {0},
it contradicts with h(z) 6≡ 0 and σ(h) < q. If a(z + η) − 2a(z) ≡ 0, since

a(z) 6≡ 0, suppose that a(z) is a polynomial, then a(z+η)

a(z)
≡ 2, it contradicts

with lim
z→∞

a(z+η)

a(z)
= 1. If a(z+η)−2a(z) ≡ 0, since a(z) 6≡ 0, suppose that a(z)

is a transcendental entire function and σ(a) < 1, by Lemma 2.2, we can also
obtain a contradiction. Then we see that the above two identities are absurd.

Subcase 2.2. Suppose that aq = −bq, then (3.5) can be rewritten as

(3.8)
[(h′(z) + h(z)Q′(z))eP (z)+Q(z) − c(z)]e−Q(z) + d(z)eP (z)−Q(z)

= h(z + η)eQ(z+η)−Q(z) − h(z).

Since σ(h) < q, deg(Q(z + η) −Q(z)) = q − 1, max{σ(c), σ(d)} < 1 ≤ q and
deg(P (z) +Q(z)) ≤ q− 1, we have σ((h′(z) + h(z)Q′(z))eP (z)+Q(z) − c(z)) < q
and σ(h(z + η)eQ(z+η)−Q(z) − h(z)) < q.

Note that e−Q(z), eP (z)−Q(z) and e−P (z) are of regular growth, and σ(e−Q(z))
= σ(e−P (z)) = σ(eP (z)−Q(z)) = q, it follows from Lemma 2.1 and (3.8) that

d(z) = a′(z)− a(z) ≡ 0.

If a′(z) − a(z) ≡ 0, then a(z) ≡ 0 or a(z) = cez, c ∈ C \ {0}, it contradicts
with a(z) 6≡ 0 and σ(a) < 1. Then we see that the above identity is absurd.

Subcase 2.3. Suppose that aq 6= bq and aq 6= −bq, then (3.5) can be
rewritten as

(3.9)
(h′(z) + h(z)Q′(z))eP (z) − c(z)e−Q(z) + d(z)eP (z)−Q(z)

= h(z + η)eQ(z+η)−Q(z) − h(z).

Since σ(h) < q, deg(Q(z + η) −Q(z)) = q − 1 and max{σ(c), σ(d)} < 1 ≤ q,
we have σ(h′(z) + h(z)Q′(z)) < q and σ(h(z + η)eQ(z+η)−Q(z) − h(z)) < q.

Note that e±P (z), e±Q(z) and eP (z)±Q(z) are of regular growth, and σ(e±P (z))
= σ(e±Q(z)) = σ(eP (z)±Q(z)) = q, it follows from Lemma 2.1 and (3.9) that

h′(z)+h(z)Q′(z) ≡ 0, c(z) = a(z+η)−2a(z) ≡ 0 and d(z) = a′(z)−a(z) ≡ 0.

From the above conclusions of Subcase 2.1 and Subcase 2.2, we see that the
above three identities are also absurd.

Thus, P (z) can only be a constant, so is eP (z). Set eP (z) ≡ A, where A is a
non-zero constant. Then (3.5) can be rewritten as
(3.10)

h(z + η)eQ(z+η)−Q(z) − h(z)−A(h′(z) + h(z)Q′(z)) = (Ad(z)− c(z))e−Q(z).

If Ad(z) − c(z) 6≡ 0, since σ(h) < q, deg(Q(z + η) − Q(z)) = q − 1 and
max{σ(c), σ(d)} < 1 ≤ q, we see that the order of growth of the left side
of (3.10) is less than q, and the order of growth of the right side of (3.10) is
q, a contradiction. Then Ad(z) − c(z) ≡ 0. Since a(z) 6≡ 0, then we have
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Aa′
(z)−a(z)

a(z)
≡ a(z+η)−2a(z)

a(z)
, that is A

(

a′
(z)

a(z)
− 1

)

≡ a(z+η)

a(z)
− 2. If a(z) is a non-

zero polynomial, then a′
(z)

a(z)
→ 0, a(z+η)

a(z)
→ 1, z → ∞, then we have A = 1.

If a(z) is a transcendental entire function with σ(a) < 1, from Lemma 2.2, we
also obtain that A = 1. Then (3.10) can be rewritten as

(3.11) eQ(z+η)−Q(z) =

(

1 +
h′(z)

h(z)
+Q′(z)

)

h(z)

h(z + η)
.

We claim that q = 1. In fact, if it is not true, then q ≥ 2. If σ(h) < 1, since
deg(Q(z + η) −Q(z)) = q − 1 ≥ 1, we see that the order of growth of the left
side of (3.11) is q − 1 ≥ 1, and the order of growth of the right side of (3.11)
is less than 1, a contradiction. Then we have σ(h) ≥ 1. From (3.11), we see

that
(

1 + h′
(z)

h(z)
+Q′(z)

)

h(z)

h(z+η)
is an entire function. Then for all z satisfying

|z| = r > r2 and |z| = r 6∈ [0, 1] ∪ E1 ∪ E2, for any given ε
(

0 < ε < q−σ(h)

3

)

,

from (2.8)-(2.10), we have
∣

∣

∣

∣

(

1 +
h′(z)

h(z)
+Q′(z)

)

h(z)

h(z + η)

∣

∣

∣

∣

≤

(

1 +

∣

∣

∣

∣

h′(z)

h(z)

∣

∣

∣

∣

+ |Q′(z)|

) ∣

∣

∣

∣

h(z)

h(z + η)

∣

∣

∣

∣

≤ (1 + rσ(h)−1+ε + rq−1+ε) exp{rσ(h)−1+ε}

≤ rσ(h)+q−2+2ε exp{rσ(h)−1+ε} < exp{rq−1},

that is,

T

(

r,

(

1 +
h′(z)

h(z)
+Q′(z)

)

h(z)

h(z + η)

)

= m

(

r,

(

1 +
h′(z)

h(z)
+Q′(z)

)

h(z)

h(z + η)

)

< rq−1.

It follows from the above inequality that

σ

((

1 +
h′(z)

h(z)
+Q′(z)

)

h(z)

h(z + η)

)

< q − 1.

Since deg(Q(z + η) − Q(z)) = q − 1, we see that (3.11) is absurd. Then we
must have q = 1, then

f(z) = a(z) +H(z)ecz,

where c ∈ C \ {0} is a constant and H(z) (6≡ 0) is an entire function with
λ(H) = σ(H) < 1. It follows from (3.11) that

(3.12)
h(z + η)

h(z)
ecη = 1 + c+

h′(z)

h(z)
.
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If h(z)(6≡ 0) is a polynomial, then

(3.13)
h′(z)

h(z)
→ 0,

h(z + η)

h(z)
→ 1, z → ∞.

It follows from (3.12) and (3.13) that ecη = 1+c. If h(z)(6≡ 0) is a transcenden-
tal entire function with σ(h) < 1, from Lemma 2.2, we also have ecη = 1 + c.

If a(z) ≡ 0, by Lemma 2.5, set b = 0, then

∆ηf(z)

f ′(z)
= A and f(z) = H(z)ecz,

where H(z)(6≡ 0) is an entire function with λ(H) = σ(H) < 1, A, c, η ∈ C \ {0}
are constants satisfying ecη = 1 + Ac. This completes the proof of Theorem
1.1. �

Proof of Theorem 1.2. Using the same method as in the proof of Theorem 1.1,
the conclusion of Theorem 1.2 follows immediately. We omit the proof here. �
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