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SOME RESULTS ON COMPLEX
DIFFERENTIAL-DIFFERENCE ANALOGUE OF
BRUCK CONJECTURE

MIN FENG CHEN AND ZONG SHENG GAO

ABSTRACT. In this paper, we utilize the Nevanlinna theory and unique-
ness theory of meromorphic function to investigate the differential-diff-
erence analogue of Briick conjecture. In other words, we consider
Ay f(z) = f(z+n)— f(2) and f/(z) share one value or one small function,
and then obtain the precise expression of transcendental entire function
f(2) under certain conditions, where n € C\ {0} is a constant such that

fz+mn) - f(z) #0.

1. Introduction and results

In this paper, we assume that the reader is familiar with the standard sym-
bols and fundamental results of Nevanlinna theory [9, 11]. In addition, we use
notations A(f) and o(f) to denote the exponent of convergence of the zero-
sequence and the order of growth of meromorphic function f(z) respectively.

Let f(z) and g(z) be two nonconstant meromorphic functions, and let a be
a complex number in the extended complex plane. We say that f(z) and g(z)
share a CM (IM) provided that f(z) and g(z) have the same a-points counting
multiplicities (ignoring multiplicities).

In 1996, Briick [2] posed a well-known conjecture.

Conjecture (See [2]). Let f(z) be a nonconstant entire function with hyper-
order o3(f) < 00, and o2(f) be not a positive integer. If f(z) and f'(z) share
the finite value a CM, then

f'z)—a _
Fe—a
where ¢ is a nonzero constant.
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The conjecture has been verified in the special cases when a = 0 (see [2]),
or when f(z) is an entire function of finite order (see [7]).

Recently, some results on difference analogues of Briick conjecture were con-
sidered in [3, 4, 10, 12, 13, 14]. Here, we recall the following results.

Theorem A (See [10]). Let f(z) be a meromorphic function of o(f) < 2, and
1 be a non-zero constant. If f(z) and f(z +n) share the finite value a and co
CM, then

flz+mn)—a _
f(z)—a

for some constant 7.

In [10], Heittokangas et al. gave the example f(z) = e*" + 1 which shows
that o(f) < 2 can not be relaxed to o(f) < 2.

It is well-known that A, f(2) = f(z4+n)—f(2) (where n € C\{0} is a constant
such that f(z+n)— f(z) # 0) is regarded as the difference counterpart of f'(z).
For a transcendental entire function f(z) of finite order which has a finite Borel
exceptional value, Chen and Yi [4] and Chen [3] considered the problem that
A, f(z) and f(z) shared one finite value CM and obtained the following results.

Theorem B (See [4]). Let f(z) be a finite order transcendental entire function
which has a finite Borel exceptional value a, and let n be a constant such that

f(z+n) # f(2). If A, f(2) and f(2) share a CM, then
fz+n) - f(2)

a=0and —————= =¢

f(2)

for some constant c.

Theorem C (See [3]). Let f(z) be a transcendental entire function of finite
order that is of a finite Borel exceptional value o, and n € C be a constant such
that f(z+mn) # f(2). If Ay f(2) = f(z+n) — f(2) and f(z) share a(# a) CM,
then
Apf(z)—a  a
f(z)—a a—-a’

Most recently, Liu and Dong [15] considered the differential-difference ana-

logue of Briick conjecture and obtained the following result.

Theorem D (See [15]). Suppose that f(z) is an entire solution of equation
f'(2) = az) = "D (f(z + ¢) —al2)),

where ¢ € C\ {0} is a constant, P(z) is a polynomial and a(z) is an entire
function with o(a) < o(f). If \(f —a) < o(f), then o(f) =1+ deg P(z).

In this paper, we consider A, f(z) and f’(z) share one value or one small
function, and obtain more precise results than Theorem D in the following.
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Theorem 1.1. Let f(z) be a transcendental entire function of finite order,
n € C\ {0} be a constant such that Ay f(z) = f(z+n) — f(2) #0, a(z) be an
entire function such that o(a) <1 and MN(f —a) < o(f). If Ay f(z) and f'(2)
share a(z) CM, then one of the following two cases holds:
(i) If a(z) #£0, then
Ayf(z) —alz)
J') —al2)
where H(z)(# 0) is an entire function with A\(H) = o(H) <1 and c € C\ {0}
is a constant satisfying e =1+ c.
(ii) If a(2) =0, then
Ay f(z)
71(2)
where H(z)(# 0) is an entire function with N\(H) = o(H) <1, A, ¢ € C\ {0}
are constants satisfying e =1 + Ac.

=1 and f(z)=a(z)+ H(z)e%,

=A and f(z)=H(2)e%,

Theorem 1.2. Let f(z) be a transcendental entire function of finite order, n be
a non-zero constant such that A, f(z) = f(z+n) — f(z) 0, b(z) be an entire
function such that o(b) < 1 and A(f —b) < o(f). If A,f(2) and f'(z) share
a(z) CM, where a(z) is an entire function satisfying o(a) < 1 and a(z) # b'(2),

then
Anf(z) —al(z)
f'(z) —a(2)

where H(z)(# 0) is an entire function with \(H) =o(H) <1, A, ce C\ {0}
are constants satisfying e = 1 + Ac.

=A and f(z) =0b(z) + H(2)e”,

Remark 1.1. From the conditions of Theorem 1.2, we see that a(z) # b/(z), if
a(z) = b(z), then a(z) # 0, which is the case (i) of Theorem 1.1. In Theorem
1.2,if b(z) = b and a(z) = a or b'(z) # 0 and a(z) = 0, the following corollaries
can be obtained.

Corollary 1.1. Let f(z) be a transcendental entire function of finite order
which has a finite Borel exceptional b, n be a non-zero constant such that

Ay f(z) = f(z+n)— f(2) 0. If A, f(2) and f'(z) share a(# 0) CM, then

Apflz)za an z) = z)e*
St and () = b (),

where H(z)(# 0) is an entire function with \(H) =o(H) <1, A, ce C\ {0}
are constants satisfying e = 1 + Ac.

Remark 1.2. From Corollary 1.1, if a = b(# 0), which is also a special case in
Theorem 1.1 when a(z) = a(#£ 0).

Corollary 1.2. Let f(z) be a transcendental entire function of finite order,
n be a non-zero constant such that Ay f(z) = f(z+n) — f(2) # 0, b(z) be a
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nonconstant entire function such that o(b) < 1 and A(f —b) < o(f). If A, f(2)
and f'(z) share 0 CM, then

Buf(z) _ an z) =b(z z)e®
IC) 4 and f() = ble) + HCE)
where H(z)(# 0) is an entire function with N\(H) = o(H) <1, A, ¢ € C\ {0}

are constants satisfying e = 1 + Ac.

Remark 1.3. From the conditions of Corollary 1.2, we know that o'(z) # 0. If
b'(z) =0, namely, b(z) is a constant, then Corollary 1.2 is still valid according
to the following Lemma 2.5.

Example 1.1. Suppose that f(z) = z + e°*, where ¢ € C\ {0} is a constant.
Then A(f —2) < o(f). Let n = 1 and ¢ satisfy e® = 1+ ¢, we see that
Apf(z) = 14 ce®® = f'(z). Then % = 1, that is, A, f(z) and f'(2)
share z CM.

Example 1.2. Suppose that f(z) = e“*, where ¢ € C\ {0} is a constant.
Then A(f) < o(f). Let n = log2 and c satisfy 2° = 1 + 2¢, we see that
Ay, f(z) = 2ce®” = 2f'(z). Then %Z()Z) = 2, that is, A, f(z) and f’(z) share 0
CM.

Example 1.3. Suppose that f(z) = 22 + e, where ¢ € C\ {0} is a constant.
Then A(f — 2%) < o(f). Let n = 1 and c satisfy e® = 1 + 3¢, we see that
A, f(z) =22+ 14 4ce®® and f'(z) = 2z + ce®®. Then W?Z(i;) =1, that
is, A, f(z) and f’(z) share 2(z + 1)(# 2z) CM.

2. Lemmas for the proof of Theorems

Lemma 2.1 (See [16, p. 77]). Suppose that fij(z) (j = 1,2,...,n+ 1) and
gi(z) j=1,2,...,n) (n > 1) are entire functions satisfying:

<n§ﬁww@zmﬂw.

(ii) The order of f;(2) is less than the order of e9+(*) for 1 < j < n+1,
1 < k < n. And furthermore, the order of f;(z) is less than the order Of
e9n(D=9k(2) forn>2and1<j<n+1,1<h<k<n.

Then fi(2) =0, (=1,2,...,n+1).

e-set. Following Hayman [8, pp. 75-76], we define an e-set to be a countable
union of open discs not containing the origin and subtending angles at the origin
whose sum is finite. If E is an e-set, then the set of » > 1 for which the circle
S(0,7) meets E has finite logarithmic measure, and for almost all real 8 the
intersection of E with the ray arg z = 6 is bounded.
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Lemma 2.2 (See [1, Lemma 3.3]). Let f(z) be a transcendental meromorphic
function of order o(f) < 1. Let h > 0. Then there exists an e-set E such that

Fete o fto)
fero 0 M TG

uniformly in ¢ for |c| < h. Further, E may be chosen so that for large z ¢ E,
the function f(z) has no zeros or poles on | — z| < h.

=1 asz—o00in C\E,

Lemma 2.3 (See [6, Corollary 2]). Let f(z) be a transcendental meromorphic
function of finite order o, k, j (k > j > 0) be integers. Then for any given
e > 0, there exists a set E C (1,00) of finite logarithmic measure, such that for
all z satisfying |z| =r ¢ [0,1] U E, we have

f® ()
)
Lemma 2.4 (See [5, Theorem 8.2]). Let f(z) be a meromorphic function of
finite order o, n be a non-zero complex number, and € > 0 be given real con-

stants, then there exists a subset E C (1,00) of finite logarithmic measure such
that for all |z| =7 € [0,1] U E, we have

< |z|(k—j)(a—1+e).

ex 7Tcrfl+€ f(Z + 77) ex Ta'flJrE
p{ < '7f(z) ' < exp{ }-

Lemma 2.5. Let f(2) be a transcendental entire function of finite order which
has a finite Borel exceptional b, n € C\ {0} be a constant such that A, f(z) =
f(z+n)— f(z) #£0. If A, f(2) and f'(z) share 0 CM, then

Ay f(2)
=A an z) = z)e?
i 4 1) = b+ H)e,
where H(z)(# 0) is an entire function with N\(H) = o(H) <1, A, ¢ € C\ {0}

are constants satisfying e = 1 + Ac.

Proof. Since f(z) has a Borel exceptional b, by the Hadamard’s factorization
theorem [16, Theorem 2.5], we obtain

(2.1) f(2) = b+ h(2)e9®),
where h(z)(% 0) is an entire function, Q(z) is a polynomial such that
(2.2) o(h) = A(h) = A(f — b) < o(f) = deg Q(2).
Furthermore, A, f(z) and f’(z) share 0 CM, we have

A f(z) _ P(2)
(2.3) 7f’(z) e ,

where P(z) is a polynomial. It follows from (2.2) and (2.3) that
(2.4) deg P(z) < deg Q(2).
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Substituting (2.1) into (2.3) yields
(25)  h(z+n)eQEF=QE) _ () = (1 (2) + h(:)Q'(2))eP .

In what follows, we assume that P(z) £ 0 and deg P(z) = p, we discuss two
cases: 1 < deg P(z) = degQ(z) and 0 < deg P(z) < degQ(z). Denote
(2.6) P(2) = apz? +ap_12P "'+ +ag, Q(2) =bgz?+bg_127" 1+ + by,
where a,(# 0), ..., a0, by(5# 0),...,bg are constants, ¢ = o(f) > 1is an integer.
Case 1. 1 < p = ¢q. Since deg(Q(z +1n)—Q(2)) =q¢g—1, h(z) Z 0 and
o(h) < g, then R/ (z) + h(z)Q'(z) # 0, we see that the order of growth of the
left side of (2.5) is less than ¢, and the order of growth of the right side of (2.5)
is ¢. This is a contradiction.
Case 2. 0<p<gq. If 0 <p < q—1, then (2.5) can be rewritten as
Qn)-Q(:) _ W(z) > P(z)] _hle)
(2.7) e [1+<h()+Q() EETS
If o(h) < 1, since deg(Q(z +1) — Q(z)) =¢—1>1and deg P(z) < ¢ — 1, we
know that the order of growth of the left side of (2.7) is ¢ — 1, and the order
of growth of the right side of (2.7) is less than ¢ — 1, a contradiction. Then we
have a(h) > 1.
By Lemma 2.3, for any given 1 > 0, there exists a set F1 C (1,00) of finite
logarithmic measure, such that for all z satisfying |z| = r € [0, 1] U E4, we have

hl(z) < |Z|(T(h)—1+61.
h(z) |~
By Lemma 2.4, for any given 5 > 0, there exists a set Fa C (1,00) of finite
logarithmic measure, such that for all z satisfying |z| = » € [0, 1] U E5, we have

h(z +mn)
h(z)
Set ¢ = max{e1,ea} (0 <e< min{&g(h), %}), there exists rg > 0 such

that for all z satisfying |z| = r > ro, we have

(2.10) ri—l=e < |Q'(2)]| < ri=1t¢  and |eP(Z)| < exp{rfte}.

(2.8)

(29) eXp{fTa(h)_l-i_EQ} < ‘ ‘ < eXp{TU(h)_1+82}.

From (2.7), we see that {1 + (h/(z) +Q'(2 )) P(Z)] e h(z) 7 is an entire function.

+
Then for all z satisfying |z| = r > 9 and |z| = r € [0,1] U Ey U Es, by (2.8)-

(2.10), we have
o (38 )]

h(z) z4n)
< [+ (J5 en) lere] | 2E

IN

(1 + (reW=14e pa=14e) exp{rPFe}) exp{ro(W—1+e}

< Tcr(h)+q72+25 eXp{TerE + Ta(h)flJrs} < exp{rqil};
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(e[ (55 - 00) )
e (H9) o) o] L)

< ra

that is,

The above inequality yields that

(o (8 )] ) <o

It follows from deg(Q(z +n) — Q(z)) = ¢ — 1 that (2.7) is a contradiction.
Then we must have ¢ —1 = p > 0. We claim that ¢ — 1 = p = 0, otherwise
qg—1=p>1. It follows from (2.6) that

(2.11) P(2) = ag-127  + P;_a(2), Q(z+1n) —Q(2) = qnbyz?™ ' + Qu—2(2),
where aq—1(# 0), by(# 0) are constants, Py_2(z), Qq—2(2) are polynomials,
deg Py—2(z) < ¢ —2, degQq—2(z) < ¢ —2. In what follows, we consider two
subcases: 2.1, ag—1 = qnbg; 2.2, ag—1 # qnbg.

Subcase 2.1. If a,_1 = qnb,, then (2.5) can be rewritten as

0P = M) oiin-ae-re) _ (ME) L o,
(2.12) ) (h(z) +Q'( )).

It follows from aq—1 = gnbg that deg(Q(z+n) — Q(2) — P(z)) = deg(Qq—2(2) —
P, 2(z)) < g — 2. Using the same method as above, we can obtain that

hMz+n) aein-qe-re _ (MGE) o
# z #)— <q-—1.
(M e T )<
It follows from deg(—P(z)) = ¢ — 1 > 1 that (2.12) is a contradiction.

Subcase 2.2. If a,_1 # qnby, it follows from (2.5) and (2.11) that
(2.13)

h/(Z> I ag_1297%Y _ h(Z +77) qnbe 29 P +Qq_2(2)—Py_2(2) —Py_2(z2)

<h(z)+Q(z) e =T e e .
Without loss of generality, we assume that gnby| < |ag—1|. Set argaq—1 = 61
and arg(nb,) = 2. For the above given ¢ and for all z satisfying |z| = r > r
and |z| =7 € [0,1]U By U By, z = re'®  where 6, is a real constant such that
cos((qg — 1)0y + 01) = 1, by (2.8)-(2.10), we have
h/(z) |eaq71zq71|

h(z)

‘(h/(z) —i—Q/(Z)) eaqlqu‘ > (|QI(Z)| _
> (1977 — o) exp a1

h(z)
> 11717 (1 + (1)) exp{lag-1[r? T}

> expflag-1[r*~},
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and

ME 4 1) anpy27 4Qua ()= Pya(2) _ g=Pu-a(2)
h(z)

Rz A || anbezt14Qq2(2)=Py-2(2)| | |~ Pa—2(2)
e [+ fe=Fom2to)

exp{ra(h)—1+a} exp{q|nby| cos((qg — 1)8y + 02)r9~1 + O(r172)}
< exp{q|nby| cos((q — 1) + 02)rT* + o(r™ 1)},

ARVAN

that is,
(214)  exp{lag-1]r'~"} < exp{qlnby| cos((g — 1) + 62)r~" + o(r* 1)}

We claim that g|nb,| cos((q¢ — 1)00 + 02) < |ag—1]. In fact, if g|nby| = |ag—1], it
follows from aq—1 # qnb, that cos((g—1)0+062) # 1, then cos((¢g—1)0p+02) < 1.
Thus g|nbg|cos((qg — 1)80 + 02) < q|nbg| = |ag—1]- If gnbg| < |ag—1|, then
qlnbq| cos((g — 1)00 + 02) < qlnby| < |ag—1].

For any given €3 (0 <eg< l2amrl=alnbdl Cgs((q_1)9°+92) ), it follows from (2.14)
that

exp{lag 111~} < exp{alnby cos((q — 1) + 62)r1~" + o(r 1)}
< exp{(Jag—1| —e3)r"""}.
This is a contradiction.

Thus, we must have ¢ — 1 = p = 0, that is p = 0 and ¢ = 1. Then e’
is a nonzero constant and f(z) = b+ H(z)e®*, where H(z)(# 0) is an entire
function with A(H) = o(H) < 1, ¢ € C\ {0} is a constant. Set e”’(*) = A, then
(2.5) can be rewritten as

h(z+n) h(z2)
2.15 —LeM =1 A
219 e =1+ (55 )4
where A, ¢,n are non-zero constants. If h(z)(£ 0) is a polynomial, then
W(z) h(z +n)
2.16 0, ————= 1 .
(2.16) ne) -0, 8] -1, z— 00

It follows from (2.15) and (2.16) that e“? = 1+ Ae. If h(2)(£ 0) is a transcen-
dental entire function with o(h) < 1, by Lemma 2.2, we also have e“7 = 1+ Ac.

If P(z) =0, then e”'(*) = 1. Using the same method as in the proof of Case
2, we obtain that f(z) = b+ H(z)e*, where H(z)(Z 0) is an entire function
with A(H) = o(H) < 1, ¢c € C\ {0} is a constant satisfying e = 1+ ¢. O

3. Proofs of Theorems

Proof of Theorem 1.1. Now we suppose that a(z) Z 0. By the Hadamard’s
factorization theorem [16, Theorem 2.5] and A(f — a) < o(f), we obtain

(3.1) f(2) = a(z) + h(z)e?=),
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where h(z) is a non-zero entire function, (z) is a polynomial, and h(z), Q(z)
satisfy

(3.2) o(h) = A(h) = A(f —a) < o(f) = deg Q(2)-
Since A, f(z) and f’(z) share a(z) CM, we have
Ay f(z) —a(?) — P
33 7]~ aCe) |
where P(z) is a polynomial. It follows from (3.2) and (3.3) that
(3.4) deg P(z) < deg Q(2).
Substituting (3.1) into (3.3) yields
(3.5)

B(z4m)e@ED=0 _p(z) +e(2)e= 2 = (W(2)+h(2)Q (2) +d(z)e~ Q)P ),
where ¢(z) = a(z + 1) — 2a(z) and d(z) = a/(z) — a(z). Since o(a) < 1, we see
that max{o(c), o(d)} < 1.

In what follows, we consider two cases: 1 < degP(z) < degQ(z) and
deg P(z) = deg Q(z). Set

P(2) =ap2? +ap_12P" 1+ tag, Q(2) =bgz? +byg_1297 + - + by,

where a,(#0), ..., a0, bg(#0),...,by are constants, p,q are positive integers.

Case 1. Suppose that 1 < p < ¢, then (3.5) can be rewritten as
(3.6)
h(z+n)e?EM=CE) _h(2)— (W (2)+h(2)Q'(2))e”®) = (d(2)e”? —c(z))e ).
It follows from a(z) # 0 and o(a) < 1 that d(z) = a'(z) — a(z) # If
d(z)eP®) — ¢(z) = 0, then we have e”’(*) = Ez; By max{o(c), o(d)} < 1, we
see that o(e®)) < max{o(c), o(d)} < 1, which contradicts with o(e”*)) =
deg P(z) = p > 1. Hence, we must have d(z)e”’*) — ¢(z) # 0. Since o(h) < g,
deg(Q(z+n) —Q(2)) = ¢—1 and o(eF®)) = deg P(2) = p < g, we see that the
order of growth of the left side of (3.6) is less than ¢, and the order of growth
of the right side of (3.6) is ¢. This is a contradiction.

Case 2. Suppose that p = ¢q. For a4 and by, we consider three subcases:
2.1, aqg = bg; 2.2, ag = —by; 2.3, agq # by and aq # —by.

Subcase 2.1. Suppose that a, = by, then (3.5) can be rewritten as

(h'(2) + (=) Q' (2))e” ) — c(z)e~ @)
= h(z+ 77)eQ(ern)fQ(Z) —h(z) — d(z)eP(Z)fQ(Z)_
Since o(h) < ¢, deg(Q(z +n) — Q(2)) = ¢ — 1, max{o(c), o(d)} <1 < ¢

and deg(P(z) — Q(z)) < q — 1, we have o(h'(z) + h(2)Q'(z)) < g and o(h(z +
)eQGE+=QE) _(2) = d(z)eP@-Q) <

Note that e”(*) ¢=@() and eP(*)+Q(2) are of regular growth, and o(e”*)) =
o(e=QR)) = U(€P(Z)+Q(Z)) = g, it follows from Lemma 2.1 and (3.7) that

h'(z)+h(2)Q'(2) =0 and c¢(z) =a(z+n) — 2a(z) = 0.

(3.7)
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If W(2) + h(2)Q'(z) = 0, then h(z) = 0 or h(z) = ce ?®), ¢ € C\ {0},
it contradicts with h(z) # 0 and o(h) < ¢. If a(z + 1) — 2a(z) = 0, since

a(z) # 0, suppose that a(z) is a polynomial, then % = 2, it contradicts

with lim % =1. Ifa(z+n) —2a(z) = 0, since a(z) Z 0, suppose that a(z)
zZ—00

is a transcendental entire function and o(a) < 1, by Lemma 2.2, we can also

obtain a contradiction. Then we see that the above two identities are absurd.

Subcase 2.2. Suppose that a; = —bg, then (3.5) can be rewritten as

(W (2) + h(2) Q' (2))ePEHRE) _ ¢(2)]e Q) 4 d(2)eP)-Q()

3.8
(3.8) = h(z _i_n)eQ(ern)*Q(Z) — h(z).

Since o(h) < ¢, deg(Q(z + 1) — Q(2)) = ¢ — 1, max{o(c), o(d)} <1< ¢ and
deg(P(2) + Q(2)) < q ~ 1, we have o((/(2) + h(2)Q'())eP 12 — ¢(2) < g
and o (h(z +n)eQETN=RE) _ p(2)) < q.

Note that e~ Q)| P(2)=Q(=) and e~ F*) are of regular growth, and o(e~?(*))
=g(e PRy = g(eP(*)=Q()) = ¢ it follows from Lemma 2.1 and (3.8) that

d(z) =d'(z) —a(z) = 0.

If d’(2) — a(z) = 0, then a(z) = 0 or a(z) = ce?, ¢ € C\ {0}, it contradicts
with a(z) # 0 and o(a) < 1. Then we see that the above identity is absurd.

Subcase 2.3. Suppose that a;, # b, and ay # —b,, then (3.5) can be
rewritten as

(B'(2) + h(2)Q'(2))el®) — ¢(2)e™ Q) 4 d(z)el*)=QR)

3.9

(3.9) — h(ern)eQ(ern)*Q(Z) — h(2).

Since o(h) < ¢, deg(Q(z + 1) — Q(2)) = ¢ — 1 and max{o(c), o(d)} < 1 < g,

we have o(h/(2) + h(2)Q'(2)) < ¢ and a(h(z + 7)e@EtN=QE) _ p(2)) < q.
Note that e* ()| +Q(2) and eP(*R() are of regular growth, and o(e*F(*))

= 0(et?(3)) = g(eP(H)FR()) = ¢ it follows from Lemma 2.1 and (3.9) that

R (2)+h(2)Q'(2) =0, ¢(z) = a(z+n)—2a(z) =0 and d(z) =d'(z)—a(z) = 0.

From the above conclusions of Subcase 2.1 and Subcase 2.2, we see that the
above three identities are also absurd.
Thus, P(z) can only be a constant, so is e’(*). Set e”’(*) = A, where A is a
non-zero constant. Then (3.5) can be rewritten as
(3.10)
h(z +n)eQEFTD=RE — p(z) — AW (2) + h(2)Q'(2)) = (Ad(2) — ¢(2))e” ).

If Ad(z) — c¢(z) # 0, since o(h) < ¢, deg(Q(z +n) — Q(2)) = ¢ — 1 and
max{c(c), o(d)} < 1 < ¢, we see that the order of growth of the left side
of (3.10) is less than ¢, and the order of growth of the right side of (3.10) is
g, a contradiction. Then Ad(z) — ¢(z) = 0. Since a(z) # 0, then we have
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a(z) a(z) a(z) = “a(z)
zero polynomial, then ‘Z/((ZZ)) — 0, a(;(—:)n) — 1, z — oo, then we have A = 1.
If a(z) is a transcendental entire function with o(a) < 1, from Lemma 2.2, we

also obtain that A = 1. Then (3.10) can be rewritten as

e e - (14 ) e

We claim that ¢ = 1. In fact, if it is not true, then ¢ > 2. If o(h) < 1, since
deg(Q(z+n) — Q(2)) = ¢— 1 > 1, we see that the order of growth of the left
side of (3.11) is ¢ — 1 > 1, and the order of growth of the right side of (3.11)
is less than 1, a contradiction. Then we have o(h) > 1. From (3.11), we see

that (1 + };I,((ZZ)) +Q’ (z)) h(hz(i)n) is an entire function. Then for all z satisfying

|z| =7 >ry and |z| = r & [0,1] U By U E,, for any given€(0<€< &3(}1)),
from (2.8)-(2.10), we have

(37 +90) g

ALE—aG) — alztn)—20(z) a9 A (M - 1) = 2zt _ 9 1f g(2) is a non-

h(z) z+mn)
< ([ eon) [y

< (1 + ra(h)—l—i—a + Tq_1+8)exp{7‘a(h)_1+8}

< Ta(h)+q72+25 eXp{Td(h)71+€} < eXp{Tqil},

7 (n (145 -0 )
(- (1 g re0) ey
<7l

that is,

It follows from the above inequality that

Wz |y h(z)
14— — - 1.
(475 +00) meay) <o
Since deg(Q(z + 1) — Q(2)) = ¢ — 1, we see that (3.11) is absurd. Then we
must have ¢ = 1, then
f(z) = a(z) + H(z)e,

where ¢ € C\ {0} is a constant and H(z) (£ 0) is an entire function with
AMH)=0(H) < 1. Tt follows from (3.11) that

(3.12) %em —1tct %
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If h(z)(# 0) is a polynomial, then

h/
(Z) — , M N 17
h(z) h(z)
It follows from (3.12) and (3.13) that e®” = 1+c¢. If h(2)(£ 0) is a transcenden-
tal entire function with o(h) < 1, from Lemma 2.2, we also have e“7 = 1 + ¢.
If a(z) =0, by Lemma 2.5, set b = 0, then
Ay f(2)
———==A and f(z)=H(z)e%,
5 (:) = H(2)
where H(z)(# 0) is an entire function with A(H) = o(H) < 1, 4,¢,n € C\ {0}
are constants satisfying e“” = 1 4+ Ac. This completes the proof of Theorem
1.1. ([l

(3.13)

zZ — Q.

Proof of Theorem 1.2. Using the same method as in the proof of Theorem 1.1,
the conclusion of Theorem 1.2 follows immediately. We omit the proof here. O
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