INEQUALITIES FOR THE NON-TANGENTIAL DERIVATIVE AT THE BOUNDARY FOR HOLOMORPHIC FUNCTION

Bülent Nafi Örnek

Abstract

In this paper, we present some inequalities for the non-tan gential derivative of $f(z)$. For the function $f(z)=z+b_{p+1} z^{p+1}+$ $b_{p+2} z^{p+2}+\cdots$ defined in the unit disc, with $\Re\left(\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}\right)>\beta$, $0 \leq \beta<1,0 \leq \lambda<1$, we estimate a module of a second non-tangential derivative of $f(z)$ function at the boundary point ξ, by taking into account their first nonzero two Maclaurin coefficients. The sharpness of these estimates is also proved.

1. Introduction

Let f be a holomorphic function in the unit disc $D=\{z:|z|<1\}, f(0)=0$ and $|f(z)|<1$ for $|z|<1$. In accordance with the classical Schwarz lemma, for any point z in the disc D, we have $|f(z)| \leq|z|$ and $\left|f^{\prime}(0)\right| \leq 1$. Equality in these inequalities (in the first one, for $z \neq 0$) occurs only if $f(z)=c z,|c|=1$ ([4], p. 329).

Let $f(z)=z+b_{p+1} z^{p+1}+b_{p+2} z^{p+2}+\cdots$ be a holomorphic function in the unit disc D such that $\Re\left(\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}\right)>\beta, 0 \leq \beta<1,0 \leq \lambda<1$.

Consider the function

$$
g(z)=\frac{\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}-\beta}{1-\beta}=1+a_{p} z^{p}+\cdots
$$

$g(z)$ is a holomorphic function and $\Re g(z)>0$ for $|z|<1$ and hence

$$
\begin{equation*}
\phi(z)=\frac{1-g(z)}{1+g(z)}=c_{p} z^{p}+\cdots \tag{1.1}
\end{equation*}
$$

is a holomorphic function in the unit disc $D, \phi(0)=0$ and since $\Re\left(\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}\right)$ $>\beta$, it also follows that $|\phi(z)|<1$ for $|z|<1$. Therefore, from the Schwarz

Received March 1, 2014.
2010 Mathematics Subject Classification. 30C80, 32A10, 58K05.
Key words and phrases. Schwarz lemma on the boundary, holomorphic function, second non-tangential derivative, critical points.
lemma, we obtain

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq \frac{(1-\lambda)\left(1+(1-2 \beta)|z|^{p}\right)}{1-\lambda-(1+(1-2 \beta) \lambda)|z|^{p}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{p+1}\right| \leq \frac{2(1-\beta)}{(1-\lambda)(1+p)} \tag{1.3}
\end{equation*}
$$

Equality is achieved in (1.2) (for some nonzero $z \in D$) or in (1.3) if and only if $f(z)$ is the function of the form

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p} e^{i \theta}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p} e^{i \theta}} d t
$$

where θ is a real number.
H. Unkelbach and R. Osserman have given the inequalities which are called the boundary Schwarz lemma. They have first showed that

$$
\begin{equation*}
\left|f^{\prime}(\xi)\right| \geq \frac{2}{1+\left|f^{\prime}(0)\right|} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(\xi)\right| \geq 1 \tag{1.5}
\end{equation*}
$$

under the assumption $f(0)=0$, where f is a holomorphic function mapping the unit disc into itself and ξ is a boundary point to which f extends continuously. Moreover, the equality in (1.4) holds if and only if f is of the form

$$
f(z)=z e^{i \theta} \frac{z-a}{1-\bar{a} z}
$$

where $\theta \in \mathbb{R}$ and $a \in D$ satisfies $\arg a=\arg \xi$. Also, the equality in (1.5) holds if and only if $f(z)=z e^{i \theta}, \theta \in \mathbb{R}$.

One does not need to assume that f extends continuously to ξ. For example, if f has a radial limit $f(\xi)$ at ξ, with $|f(\xi)|=1$, and if f has a radial derivative at ξ, then that derivative also satisfies the inequalities (1.4) and (1.5). Accordingly, using the Möbius transformation, they have generalized the inequality on the case of $f(0) \neq 0$ (see [7], [9]).

If, in addition, the function f has an angular limit $f(\xi)$ at $\xi \in \partial D,|f(\xi)|=1$, then by the Julia-Wolff lemma the angular derivative $f^{\prime}(\xi)$ exists and $1 \leq$ $\left|f^{\prime}(\xi)\right| \leq \infty$ (see [8]).

Vladimir N. Dubinin has continued this line and has made a refinement on the boundary Schwarz lemma under the assumption that $f(z)=b_{p} z^{p}+$ $b_{p+1} z^{p+1}+\cdots$, with a zero set $\left\{a_{k}\right\}$ (see [3]).

Some other types of strengthening inequalities are obtained in (see [1], [5], [6]).

In the following theorems, if we know the second and the third coeffient in the expansion of the function $f(z)=z+b_{p+1} z^{p+1}+b_{p+2} z^{p+2}+\cdots$, then we obtain more general results on the second non-tangential derivatives of certain
classes of a holomorphic function in the unit disc at the boundary by taking into account b_{p+1}, b_{p+2} and critical points of $f(z)-z$ function. The sharpness of these inequalities is also proved.
Theorem 1.1. Let $f(z)=z+b_{p+1} z^{p+1}+b_{p+2} z^{p+2}+\cdots, b_{p+1} \neq 0, p \geq 1$ be a holomorphic function in the unit disc D and $\Re\left(\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}\right)>\beta, 0 \leq \beta<1$, $0 \leq \lambda<1$ for $|z|<1$. Suppose that, for some $\xi \in \partial D$, f^{\prime} has a non-tangential limit $f^{\prime}(\xi)$ at ξ and $f^{\prime}(\xi)=\frac{\beta(1-\lambda)}{(1-\beta \lambda)}$. Then f has the second non-tangential derivative at ξ and

$$
\begin{align*}
\left|f^{\prime \prime}(\xi)\right| \geq & \frac{(1-\beta)(1-\lambda)}{2(1-\beta \lambda)^{2}}(p \tag{1.6}\\
& \left.+\frac{2\left[2(1-\beta)-(1-\lambda)(1+p)\left|b_{p+1}\right|\right]^{2}}{4(1-\beta)^{2}-\left((1-\lambda)(1+p)\left|b_{p+1}\right|\right)^{2}-2(1-\beta)(1-\lambda)(2+p)\left|b_{p+2}\right|}\right)
\end{align*}
$$

The equality in (1.6) occurs for the function

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p}} d t
$$

Proof. Let $\phi(z)$ be defined as in (1.1). $h(z)=z^{p}$ is a holomorphic function in $D,|h(z)|<1$ for $|z|<1$. By the maximum principle for each $z \in D$, we have $|\phi(z)| \leq|h(z)|$. Therefore, $p(z)=\frac{\phi(z)}{h(z)}$ is a holomorphic function in D and $|p(z)|<1$ for $|z|<1$. In particular, we have

$$
\begin{equation*}
|p(0)|=\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right| \leq 1 \tag{1.7}
\end{equation*}
$$

and

$$
\left|p^{\prime}(0)\right|=\frac{(1-\lambda)(p+2)}{2(1-\beta)}\left|b_{p+2}\right|
$$

Moreover, since the expression $\frac{\xi \phi^{\prime}(\xi)}{\phi(\xi)}$ is a real number greater than or equal to $1([2])$ and $f^{\prime}(\xi)=\frac{\beta(1-\lambda)}{(1-\beta \lambda)}$ yields $|\phi(\xi)|=1$, we get

$$
\frac{\xi \phi^{\prime}(\xi)}{\phi(\xi)}=\left|\frac{\xi \phi^{\prime}(\xi)}{\phi(\xi)}\right|=\left|\phi^{\prime}(\xi)\right|
$$

Also, since $|\phi(z)| \leq|h(z)|$, we take

$$
\frac{1-|\phi(z)|}{1-|z|} \geqslant \frac{1-|h(z)|}{1-|z|}
$$

Passing to the non-tangential limit in the last inequality yield

$$
\left|\phi^{\prime}(\xi)\right| \geq\left|h^{\prime}(\xi)\right|
$$

Therefore, we obtain

$$
\frac{\xi \phi^{\prime}(\xi)}{\phi(\xi)}=\left|\phi^{\prime}(\xi)\right| \geq\left|h^{\prime}(\xi)\right|=\frac{\xi h^{\prime}(\xi)}{h(\xi)}
$$

The function

$$
\Theta(z)=\frac{p(z)-p(0)}{1-\overline{p(0)} p(z)}
$$

is a holomorphic function in $D,|\Theta(z)|<1$ for $|z|<1, \Theta(0)=0$ and $|\Theta(\xi)|=1$ for $\xi \in \partial D$. It can be easily shown a non-tangential derivative of Θ at $\xi \in \partial D$ (see, [8]). Therefore, the second non-tangential derivative of f at ξ is obtained. From (1.4), we obtain

$$
\begin{aligned}
\frac{2}{1+\left|\Theta^{\prime}(0)\right|} & \leq\left|\Theta^{\prime}(\xi)\right|=\frac{1-|p(0)|^{2}}{|1-\overline{p(0)} p(\xi)|^{2}}\left|p^{\prime}(\xi)\right| \\
& \leq \frac{1+|p(0)|}{1-|p(0)|}\left|\frac{\phi^{\prime}(\xi) h(\xi)-h^{\prime}(\xi) \phi(\xi)}{(h(\xi))^{2}}\right| \\
& =\frac{1+|p(0)|}{1-|p(0)|}\left|\frac{\phi(\xi)}{\xi h(\xi)}\right|\left|\frac{\xi \phi^{\prime}(\xi)}{\phi(\xi)}-\frac{\xi h^{\prime}(\xi)}{h(\xi)}\right| \\
& =\frac{1+|p(0)|}{1-|p(0)|}\left\{\left|\phi^{\prime}(\xi)\right|-\left|h^{\prime}(\xi)\right|\right\}
\end{aligned}
$$

Since

$$
\Theta^{\prime}(z)=\frac{1-|p(0)|^{2}}{(1-\overline{p(0)} p(z))^{2}} p^{\prime}(z)
$$

and

$$
\begin{aligned}
\left|\Theta^{\prime}(0)\right| & =\frac{\left|p^{\prime}(0)\right|}{1-|p(0)|^{2}}=\frac{\frac{(1-\lambda)(p+2)}{2(1-\beta)}\left|b_{p+2}\right|}{1-\left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)^{2}} \\
& =\frac{2(1-\beta)(1-\lambda)(p+2)\left|b_{p+2}\right|}{4(1-\beta)^{2}-\left((1-\lambda)(p+1)\left|b_{p+1}\right|\right)^{2}}
\end{aligned}
$$

we take

$$
\frac{2}{1+\frac{2(1-\beta)(1-\lambda)(p+2)\left|b_{p+2}\right|}{4(1-\beta)^{2}-\left((1-\lambda)(p+1)\left|b_{p+1}\right|\right)^{2}}} \leq \frac{1+\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|}{1-\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|}\left\{\frac{2\left|g^{\prime}(\xi)\right|}{|1+g(\xi)|^{2}}-p\right\}
$$

Since

$$
|1+g(\xi)|^{2}=\left|1+\frac{\frac{f^{\prime}(\xi)}{\lambda f^{\prime}(\xi)+1-\lambda}-\beta}{1-\beta}\right|^{2}
$$

$$
=\left|1+\frac{1}{1-\beta}\left(\frac{\frac{\beta(1-\lambda)}{(1-\beta \lambda)}}{\lambda \frac{\beta(1-\lambda)}{(1-\beta \lambda)}+1-\lambda}-\beta\right)\right|^{2}=1
$$

and

$$
\left|g^{\prime}(\xi)\right|=\frac{1}{1-\beta}\left(\frac{(1-\lambda)\left|f^{\prime \prime}(\xi)\right|}{\left|\lambda f^{\prime}(\xi)+1-\lambda\right|^{2}}\right)=\frac{1}{1-\beta} \frac{(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\lambda)}
$$

we get

$$
\left|\phi^{\prime}(\xi)\right|=\frac{2\left|g^{\prime}(\xi)\right|}{|1+g(\xi)|^{2}}=\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)} .
$$

So, we obtain the inequality (1.6).
To show that the inequality (1.6) is sharp, take the holomorphic function

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p}} d t
$$

Then

$$
f^{\prime}(z)=\frac{d}{d z} f(z)=\frac{(1-\lambda)\left(1-(1-2 \beta) z^{p}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) z^{p}}
$$

and

$$
\left|f^{\prime \prime}(1)\right|=\frac{(1-\beta)(1-\lambda)}{2(1-\beta \lambda)^{2}} p
$$

Since $\left|b_{p+1}\right|=\frac{2(1-\beta)}{(1-\lambda)(p+1)},(1.6)$ is satisfied with equality.
Theorem 1.2. Let $f(z)=z+b_{p+1} z^{p+1}+b_{p+2} z^{p+2}+\cdots, b_{p+1}>0, p \geq 1$ be a holomorphic function in the unit disc D and $f(z)-z$ has no critical point in D except $z=0$, and $\Re\left(\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}\right)>\beta, 0 \leq \beta<1,0 \leq \lambda<1$ for $|z|<1$. Suppose that, for some $\xi \in \partial D$, f^{\prime} has a non-tangential limit $f^{\prime}(\xi)$ at $\xi, f^{\prime}(\xi)=\frac{\beta(1-\lambda)}{(1-\beta \lambda)}$. Then f has the second non-tangential derivative at ξ and

$$
\begin{align*}
\left|f^{\prime \prime}(\xi)\right| \geq & \frac{(1-\beta)(1-\lambda)}{2(1-\beta \lambda)^{2}}(p \tag{1.8}\\
& \left.-\frac{2\left[\ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right]^{2}(p+1)\left|b_{p+1}\right|}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)(p+1)\left|b_{p+1}\right|-(p+2)\left|b_{p+2}\right|}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left|b_{p+2}\right| \leq \frac{2}{(p+2)}\left|(p+1) b_{p+1} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right| . \tag{1.9}
\end{equation*}
$$

Moreover, the equality in (1.8) occurs for the function

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p}} d t
$$

and the equality in (1.9) occurs for the function

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p} e^{\Upsilon}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p} e^{\Upsilon}} d t
$$

where $0<b_{p+1}<1, \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)} b_{p+1}\right)<0$ and $\Upsilon=\frac{1+t}{1+t} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)} b_{p+1}\right)$.
Proof. Let $b_{p+1}>0$. Let $p(z), \phi(z)$ and $h(z)$ be as in the proof of Theorem 1.1. Having in mind inequality (1.7), we denote by $\ln p(z)$ the holomorphic branch of the logarithm normed by the condition

$$
\ln p(0)=\ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)} b_{p+1}\right)<0
$$

The auxiliary function

$$
\Gamma(z)=\frac{\ln p(z)-\ln p(0)}{\ln p(z)+\ln p(0)}
$$

is a holomorphic in $D,|\Gamma(z)|<1$ for $|z|<1,|\Gamma(0)|=0$ and $|\Gamma(\xi)|=1$ for $\xi \in \partial D$. It can be easily shown a non-tangential derivative of Γ at $\xi \in \partial D$ (see, [8]). Thus, the second non-tangential derivative of f at ξ is obtained. From (1.4), we obtain

$$
\begin{aligned}
\frac{2}{1+\left|\Gamma^{\prime}(0)\right|} & \leq\left|\Gamma^{\prime}(\xi)\right| \\
& =\frac{|2 \ln p(0)|}{|\ln p(\xi)+\ln p(0)|^{2}} \frac{\left|p^{\prime}(\xi)\right|}{|p(\xi)|} \\
& =\frac{-2 \ln p(0)}{\ln ^{2} p(0)+\arg ^{2} p(\xi)}\left|\frac{\phi^{\prime}(\xi) h(\xi)-h^{\prime}(\xi) \phi(\xi)}{(h(\xi))^{2}}\right| \\
& =\frac{-2 \ln p(0)}{\ln ^{2} p(0)+\arg ^{2} p(\xi)}\left\{\left|\phi^{\prime}(\xi)\right|-\left|h^{\prime}(\xi)\right|\right\} .
\end{aligned}
$$

Replacing $\arg ^{2} p(\xi)$ by zero, then

$$
\frac{1}{1+\left|\Gamma^{\prime}(0)\right|} \leq \frac{-1}{\ln p(0)}\left\{\left|\phi^{\prime}(\xi)\right|-\left|h^{\prime}(\xi)\right|\right\} .
$$

Since

$$
\Gamma^{\prime}(z)=\frac{2 \ln p(0)}{(\ln p(z)+\ln p(0))^{2}} \frac{p^{\prime}(z)}{p(z)}
$$

$$
\begin{aligned}
\left|\Gamma^{\prime}(0)\right| & =\frac{1}{2|\ln p(0)|}\left|\frac{p^{\prime}(0)}{p(0)}\right|=-\frac{1}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)} \frac{\frac{(1-\lambda)(p+2)}{2(1-\beta)}\left|b_{p+2}\right|}{\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|} \\
& =-\frac{1}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)} \frac{(p+2)\left|b_{p+2}\right|}{(p+1)\left|b_{p+1}\right|}
\end{aligned}
$$

and

$$
\left|\phi^{\prime}(\xi)\right|=\frac{2\left|g^{\prime}(\xi)\right|}{|1+g(\xi)|^{2}}=\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)}
$$

we take

$$
\begin{aligned}
& \frac{1}{1-\frac{1}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)} \frac{(p+2)\left|b_{p+2}\right|}{(p+1)\left|b_{p+1}\right|}} \\
\leq & \frac{-1}{\ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)}\left\{\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)}-p\right\}, \\
& \frac{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)(p+1)\left|b_{p+1}\right|}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)(p+1)\left|b_{p+1}\right|-(p+2)\left|b_{p+2}\right|} \\
\leq & \frac{-1}{\ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)}\left\{\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)}-p\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& p-\frac{2\left[\ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right]^{2}(p+1)\left|b_{p+1}\right|}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)(p+1)\left|b_{p+1}\right|-(p+2)\left|b_{p+2}\right|} \\
\leq & \frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)} .
\end{aligned}
$$

Thus, we obtain the inequality (1.8) with an obvious equality case.
Similarly, $\Gamma(z)$ function satisfies the assumptions of the Schwarz lemma, we obtain

$$
\begin{aligned}
1 & \geq\left|\Gamma^{\prime}(0)\right|=\left|\frac{2 \ln p(0)}{(\ln p(0)+\ln p(0))^{2}} \frac{p^{\prime}(0)}{p(0)}\right|=\frac{1}{2|\ln p(0)|}\left|\frac{p^{\prime}(0)}{p(0)}\right| \\
& =-\frac{1}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)} \frac{(p+2)\left|b_{p+2}\right|}{(p+1)\left|b_{p+1}\right|}
\end{aligned}
$$

and

$$
1 \geq-\frac{1}{2 \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)} \frac{(p+2)\left|b_{p+2}\right|}{(p+1)\left|b_{p+1}\right|}
$$

Therefore, we have

$$
\left|b_{p+2}\right| \leq \frac{2}{(p+2)}\left|(p+1) b_{p+1} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right| .
$$

We shall show that the inequality (1.9) is sharp. Let

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p} e^{\Upsilon}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p} e^{\Upsilon}} d t
$$

So, we get

$$
f^{\prime}(z)=\frac{(1-\lambda)\left(1-(1-2 \beta) z^{p} e^{\Upsilon}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) z^{p} e^{\Upsilon}}
$$

and

$$
f^{\prime}(z)=1+z^{p} \varpi(z),
$$

where

$$
\varpi(z)=-2(1-\beta) \frac{e^{\frac{1+z}{1-z} \ln \left(\frac{(1-\lambda)(1+p)}{2(1-\beta)} b_{p+1}\right)}}{1-\lambda+(1+(1-2 \beta) \lambda) z^{p} e^{\frac{1+z}{1-z} \ln \left(\frac{(1-\lambda)(1+p)}{2(1-\beta)} b_{p+1}\right)}} .
$$

Then

$$
\varpi(0)=(p+1) b_{p+1}
$$

and

$$
\varpi^{\prime}(0)=(p+2) b_{p+2} .
$$

Under the simple calculations, we obtain

$$
(p+2) b_{p+2}=-2(p+1) b_{p+1} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)} b_{p+1}\right)
$$

and

$$
\left|b_{p+2}\right|=\frac{2}{p+2}\left|(p+1) b_{p+1} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right| .
$$

Theorem 1.3. Under the same assumptions as in Theorem 1.2, we have

$$
\begin{equation*}
\left|f^{\prime \prime}(\xi)\right| \geq \frac{(1-\beta)(1-\lambda)}{2(1-\beta \lambda)^{2}}\left(p-\frac{1}{2} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right) \tag{1.10}
\end{equation*}
$$

The equality in (1.10) holds if and only if

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p} e^{\Upsilon}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p} e^{\Upsilon}} d t
$$

where $0<b_{p+1}<1, \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)} b_{p+1}\right)<0, \Upsilon=\frac{1+t e^{i \theta}}{1+t e^{i \theta}} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)} b_{p+1}\right)$ and θ is a real number.

Proof. The proof that f has the second non-tangential derivative at ξ is similar to the proof of Theorem1.2. Let $b_{p+1}>0$. Using the inequality (1.5) for the function $\Gamma(z)$, we obtain
$1 \leq\left|\Gamma^{\prime}(\xi)\right|=\frac{|2 \ln p(0)|}{|\ln p(\xi)+\ln p(0)|^{2}} \frac{\left|p^{\prime}(\xi)\right|}{|p(\xi)|}=\frac{-2 \ln p(0)}{\ln ^{2} p(0)+\arg ^{2} p(\xi)}\left\{\left|\phi^{\prime}(\xi)\right|-\left|h^{\prime}(\xi)\right|\right\}$.

Replacing $\arg ^{2} p(\xi)$ by zero, then

$$
1 \leq\left|\Gamma^{\prime}(\xi)\right|=\frac{-2}{\ln p(0)}\left\{\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)}-p\right\}
$$

and

$$
\begin{equation*}
1 \leq \frac{-2}{\ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)}\left\{\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)}-p\right\} \tag{1.11}
\end{equation*}
$$

Therefore, we obtain the inequality (1.10).
If $\left|f^{\prime \prime}(\xi)\right|=\frac{(1-\beta)(1-\lambda)}{2(1-\beta \lambda)^{2}}\left(p-\frac{1}{2} \ln \left(\frac{(1-\lambda)(p+1)}{2(1-\beta)}\left|b_{p+1}\right|\right)\right)$ from (1.11) and $\left|\Gamma^{\prime}(\xi)\right|$ $=1$, we obtain

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p} e^{\Upsilon}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p} e^{\Upsilon}} d t
$$

Theorem 1.4. Let $f(z)=z+b_{p+1} z^{p+1}+b_{p+2} z^{p+2}+\cdots, b_{p+1} \neq 0, p \geq 1$ be a holomorphic function in the unit disc D and $\Re\left(\frac{f^{\prime}(z)}{\lambda f^{\prime}(z)+1-\lambda}\right)>\beta, 0 \leq \beta<1$, $0 \leq \lambda<1$ for $|z|<1$. Suppose that, for some $\xi \in \partial D$, f^{\prime} has a non-tangential limit $f^{\prime}(\xi)$ at ξ and $f^{\prime}(\xi)=\frac{\beta(1-\lambda)}{(1-\beta \lambda)}$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be critical points of the function $f(z)-z$ in D that are different from zero. Then f has the second non-tangential derivative at ξ and

$$
\begin{align*}
\left|f^{\prime \prime}(\xi)\right| \geq & \frac{(1-\beta)(1-\lambda)}{2(1-\beta \lambda)^{2}}\left(p+\sum_{k=1}^{n} \frac{1-\left|a_{k}\right|^{2}}{\left|\xi-a_{k}\right|^{2}}\right. \tag{1.12}\\
& \left.+\frac{2\left[2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|-(1-\lambda)(p+1)\left|b_{p+1}\right|\right]^{2}}{\left(2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|\right)^{2}-\left((1-\lambda)(p+1)\left|b_{p+1}\right|\right)^{2}+2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|(p+2)\left|b_{p+2}\right|}\right)
\end{align*}
$$

In addition, the equality in (1.12) occurs for the function

$$
f(z)=\int_{0}^{z} \frac{(1-\lambda)\left(1-(1-2 \beta) t^{p} \prod_{k=1}^{n} \frac{t-a_{k}}{1-\overline{a_{k}} t}\right)}{1-\lambda+(1+(1-2 \beta) \lambda) t^{p} \prod_{k=1}^{n} \frac{t-a_{k}}{1-\overline{a_{k}} t}} d t
$$

Proof. Let $\phi(z)$ be as in (1.1) and $a_{1}, a_{2}, \ldots, a_{n}$ be critical points of the function $f(z)-z$ in D that are different from zero. $B(z)=z^{p} \prod_{k=1}^{n} \frac{z-a_{k}}{1-\overline{a_{k}} z}$ is a holomorphic function in the unit disc D and $|B(z)|<1$ for $|z|<1$. By the maximum principle for each $z \in D$, we have $|\phi(z)| \leq|B(z)|$. Also, the function $\omega(z)=\frac{\phi(z)}{B(z)}$ is a holomorphic in D and $|\omega(z)|<1$ for $|z|<1$. In particular, we
have

$$
|\omega(0)|=\frac{(1-\lambda)(p+1)}{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|}\left|b_{p+1}\right|
$$

and

$$
\left|\omega^{\prime}(0)\right|=\frac{(1-\lambda)(p+2)}{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|}\left|b_{p+2}\right| .
$$

Moreover, it can be seen that

$$
\frac{\xi \phi^{\prime}(\xi)}{\phi(\xi)}=\left|\phi^{\prime}(\xi)\right| \geq\left|B^{\prime}(\xi)\right|=\frac{\xi B^{\prime}(\xi)}{B(\xi)}
$$

It is obviously that

$$
\left|B^{\prime}(\xi)\right|=\frac{\xi B^{\prime}(\xi)}{B(\xi)}=p+\sum_{k=1}^{n} \frac{1-\left|a_{k}\right|^{2}}{\left|\xi-a_{k}\right|^{2}}
$$

The composite function

$$
\Phi(z)=\frac{\omega(z)-\omega(0)}{1-\overline{\omega(0)} \omega(z)}
$$

is a holomorphic in the unit disc $D,|\Phi(z)|<1$ for $|z|<1, \Phi(0)=0$ and $|\Phi(\xi)|=1$ for $\xi \in \partial D$. It can be easily shown a non-tangential derivative of Φ at $\xi \in \partial D$ (see, [8]). Thus, the second non-tangential derivative of f at ξ is obtained. From (1.4), we obtain

$$
\begin{aligned}
\frac{2}{1+\left|\Phi^{\prime}(0)\right|} & \leq\left|\Phi^{\prime}(\xi)\right|=\frac{1-|\omega(0)|^{2}}{|1-\overline{\omega(0)} \omega(\xi)|^{2}}\left|\omega^{\prime}(\xi)\right| \\
& \leq \frac{1+|\omega(0)|}{1-|\omega(0)|}\left|\frac{\phi^{\prime}(\xi) B(\xi)-B^{\prime}(\xi) \phi(\xi)}{(B(\xi))^{2}}\right| \\
& =\frac{1+|\omega(0)|}{1-|\omega(0)|}\left\{\left|\phi^{\prime}(\xi)\right|-\left|B^{\prime}(\xi)\right|\right\} .
\end{aligned}
$$

Since

$$
\Phi^{\prime}(z)=\frac{1-|\omega(0)|^{2}}{(1-\overline{\omega(0)} \omega(z))^{2}} \omega^{\prime}(z)
$$

and

$$
\left|\Phi^{\prime}(0)\right|=\frac{\left|\omega^{\prime}(0)\right|}{1-|\omega(0)|^{2}}=\frac{\frac{(1-\lambda)(p+2)}{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|}\left|b_{p+2}\right|}{1-\left(\frac{(1-\lambda)(p+1)}{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|}\left|b_{p+1}\right|\right)^{2}}
$$

$$
=\frac{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|(p+2)\left|b_{p+2}\right|}{\left(2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|\right)^{2}-\left((1-\lambda)(p+1)\left|b_{p+1}\right|\right)^{2}},
$$

we may write

$$
\begin{aligned}
& \frac{2}{1+\frac{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|(p+2)\left|b_{p+2}\right|}{\left(2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|\right)^{2}-\left((1-\lambda)(p+1)\left|b_{p+1}\right|\right)^{2}}} \\
\leq & \frac{1+\frac{(1-\lambda)(p+1)}{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|}\left|b_{p+1}\right|}{1-\frac{(1-\lambda)(p+1)}{2(1-\beta) \prod_{k=1}^{n}\left|a_{k}\right|}\left|b_{p+1}\right|}\left\{\frac{2(1-\beta \lambda)^{2}\left|f^{\prime \prime}(\xi)\right|}{(1-\beta)(1-\lambda)}-\left(p+\sum_{k=1}^{n} \frac{1-\left|a_{k}\right|^{2}}{\left|\xi-a_{k}\right|^{2}}\right)\right\} .
\end{aligned}
$$

Thus, we obtain the inequality (1.12) with an obvious equality case.

References

[1] T. Aliyev Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577.
[2] H. P. Boas, Julius and Julia: Mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785.
[3] V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disk, J. Math. Sci. 122 (2004), no. 6, 3623-3629.
[4] G. M. Golusin, Geometric Theory of Functions of Complex Variable, [in Russian], 2nd edn., Moscow, 1966.
[5] H. T. Kaptanoğlu, Some refined Schwarz-Pick lemmas, Michigan Math. J. 50 (2002), no. 3, 649-664.
[6] B. N. Örnek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059.
[7] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517.
[8] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
[9] H. Unkelbach, Über die Randverzerrung bei konformer Abbildung, Math. Z. 43 (1938), no. 1, 739-742.

Department of Mathematics
Gebze Institute of Technology
Gebze-Kocaeli 41400, Turkey
E-mail address: nornek@gyte.edu.tr

