References
- D.D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Paul. 26 (1977), 137-140.
- D.D. Anderson and D.F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549-569. https://doi.org/10.1016/0021-8693(82)90232-0
- D.F. Anderson and G.W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), 527-544. https://doi.org/10.1016/j.jalgebra.2005.03.007
- D.F. Anderson and G.W. Chang, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169-184. https://doi.org/10.1016/j.jalgebra.2013.04.021
- J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558-563. https://doi.org/10.4153/CJM-1969-063-4
- G.W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
- L.G. Chouinard II, Krull semigroups and divisor class groups, Canad. J. Math. 33 (1981), 1459-1468. https://doi.org/10.4153/CJM-1981-112-x
- D. Costa, J. Mott, and M. Zafrullah, The construction D+XDS[X], J. Algebra 53 (1978), 423-439. https://doi.org/10.1016/0021-8693(78)90289-2
- F. Decruenaere and E. Jespers, Prufer domains and graded rings, J. Algebra 53 (1992), 308-320.
- M. Fontana and K.A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations, in: J.W. Brewer, S. Glaz, W.J. Heinzer, B.M. Olberding (Eds.), Multiplicative Ideal Theory in Commu-tative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, pp. 169-187.
- R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583-587. https://doi.org/10.1017/S0305004100076568
- R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
-
B.G. Kang, Prufer v-multiplication domains and the ring
${R[X]_N}_v$ , J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9 - D.G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282-288. https://doi.org/10.1017/S030500410003406X
- D.G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.
- P. Sahandi, Characterizations of graded Prufer *-multiplication domain, Korean J. Math. 22 (2014), 181-206. https://doi.org/10.11568/kjm.2014.22.1.181
Cited by
- GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS vol.54, pp.6, 2017, https://doi.org/10.4134/jkms.j160625
- Graded Prüfer domains vol.46, pp.2, 2018, https://doi.org/10.1080/00927872.2017.1327595
- Graded integral domains which are UMT-domains vol.46, pp.6, 2018, https://doi.org/10.1080/00927872.2017.1399406
-
Graded integral domains in which each nonzero homogeneous
$ t$ -ideal is divisorial vol.18, pp.1, 2017, https://doi.org/10.1142/s021949881950018x