J. Appl. Math. & Informatics Vol. **32**(2014), No. 3 - 4, pp. 331 - 341 http://dx.doi.org/10.14317/jami.2014.331

ON SOME GENERALIZED I-CONVERGENT DOUBLE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION †

VAKEEL A. KHAN* AND NAZNEEN KHAN

ABSTRACT. In this article we introduce the sequence spaces $2c_0^I(f,p)$, $2c^I(f,p)$ and $2l_{\infty}^I(f,p)$ for a modulus function f, where $p = (p_k)$ is a sequence of positive reals and study some of the properties of these spaces.

AMS Mathematics Subject Classification : 65H05, 65F10. *Key words and phrases* : Ideal, filter, paranorm, modulus function, I-convergent double sequence spaces, Lipschitz function, I-convergence field.

1. Introduction

The notion of I-Convergence is a generalization of the concept of statistical convergence which was first introduced by H.Fast [5] and later on studied by various mathematicians like J.A.Fridy [6,7], Kostyrko, Salat and Wilezynski [19], Salat, Tripathy, Ziman [29] and Demirci [3].

Also a double sequence is a double infinite array of elements $x_{kl} \in \mathbb{R}$ for all $k, l \in \mathbb{N}$ (see [14,15]). The initial works on double sequences is found in Bromwich [1], Basarir and Solancan [2] and many others. Throughout this article a double sequence is denoted by $x = (x_{ij})$.

Next we discuss some preliminaries about I-convergence (see [12],[30]).

Let X be a non empty set. Then a family of sets $I \subseteq 2^X$ (power set of X) is said to be an ideal if I is additive i.e $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e $A \in I$, $B \subseteq A \Rightarrow B \in I$.

A non-empty family of sets $\pounds(I) \subseteq 2^X$ is said to be filter on X if and only if $\Phi \notin \pounds(I)$, for $A, B \in \pounds(I)$ we have $A \cap B \in \pounds(I)$ and for each $A \in \pounds(I)$ and $A \subseteq B$ implies $B \in \pounds(I)$. An Ideal $I \subseteq 2^X$ is called non-trivial if $I \neq 2^X$. A non-trivial ideal $I \subseteq 2^X$ is called admissible if $\{x : \{x\} \in X\} \subseteq I$.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset. For each ideal I, there is a filter $\pounds(I)$ corresponding to I. i.e $\pounds(I) = \{K \subseteq N : K^c \in I\}$, where $K^c = N$ -K.

Received December 17, 2013. Revised January 13 Feb 2014. Accepted February 19, 2014. *Corresponding author. [†]This work was supported by the research grant of Maulana Azad National Fellowship, University Grants Commission, India.

^{© 2014} Korean SIGCAM and KSCAM.

Definition 1.1. A double sequence $(x_{ij}) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$. $\{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L| \ge \epsilon\} \in I$. In this case we write I-lim $x_{ij} = L$. (see [17])

The space $_2c^I$ of all I-convergent sequences to L is given by

$${}_{2}c^{I} = \{(x_{ij}) \in \omega : \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L| \ge \epsilon\} \in I, \text{ for some } L \in \mathbb{Q}\}$$

Definition 1.2. A sequence $(x_{ij}) \in \omega$ is said to be I-null if L = 0. In this case we write I-lim $x_{ij} = 0$.

Definition 1.3. A sequence $(x_{ij}) \in \omega$ is said to be I-cauchy if for every $\epsilon > 0$ there exists a number $m = m(\epsilon)$ and $n = n(\epsilon)$ such that

 $\{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - x_{mn}| \ge \epsilon\} \in I$

Definition 1.4. A sequence $(x_{ij}) \in \omega$ is said to be I-bounded if there exists M >0 such that $\{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_{ij}| > M\}$.

Definition 1.5. Let $(x_{ij}), (y_{ij})$ be two sequences. We say that $(x_{ij}) = (y_{ij})$ for almost all (i,j) relative to I (a.a.k.r.I), if $\{(i,j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \neq y_{ij}\} \in I$

Definition 1.6. For any set E of sequences the space of multipliers of E, denoted by M(E) is given by

 $M(E) = \{a \in \omega : ax \in E \text{ for all } x \in E\}(\operatorname{see}[28]).$

Definition 1.7. A map \hbar defined on a domain $D \subset X$ i.e $\hbar : D \subset X \to \mathbb{R}$ is said to satisfy Lipschitz condition if $|\hbar(x) - \hbar(y)| \leq K|x-y|$ where K is known as the Lipschitz constant. The class of K-Lipschitz functions defined on D is denoted by $\hbar \in (D, K)$.

Definition 1.8. A convergence field of I-convergence is a set

 $F(I) = \{ x = (x_{ij}) \in l_{\infty} : \text{there exists } I - \lim x \in \mathbf{R} \}.$

The convergence field F(I) is a closed linear subspace of l_{∞} with respect to the supremum norm, $F(I) = l_{\infty} \cap {}_{2}c^{I}(\text{See}[23]).$

Define a function $\hbar : F(I) \to \mathbf{R}$ such that $\hbar(x) = I - \lim x$, for all $x \in F(I)$, then the function $\hbar : F(I) \to \mathbf{R}$ is a Lipschitz function ([11,4,13]).

Definition 1.9. The concept of paranorm is closely related to linear metric spaces [16]. It is a generalization of that of absolute value.

Let X be a linear space. A function $g: X \longrightarrow R$ is called paranorm, if for all $x, y, z \in X$,

(PI) g(x) = 0 if $x = \theta$, (P2) g(-x) = g(x), (P3) $g(x+y) \le g(x) + g(y)$,

(P4) If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ $(n \to \infty)$ and $x_n, a \in X$ with $x_n \to a$ $(n \to \infty)$, in the sense that $g(x_n - a) \to 0$ $(n \to \infty)$, in the sense that $g(\lambda_n x_n - \lambda a) \to 0$ $(n \to \infty)$.

A paranorm g for which g(x) = 0 implies $x = \theta$ is called a total paranorm on X, and the pair (X, g) is called a totally paranormed space.(See[23]). The idea of modulus was structured in 1953 by Nakano.(See[24]). A function $f : [0,\infty) \longrightarrow [0,\infty)$ is called a modulus if

(1) f(t) = 0 if and only if t = 0, (2) $f(t+u) \le f(t) + f(u)$ for all $t, u \ge 0$, (3) f is increasing and (4) f is continuous from the right at zero.

Ruckle in [25,26,27] used the idea of a modulus function f to construct the sequence space

$$X(f) = \{x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty\}$$

This space is an FK space ,and Ruckle proved that the intersection of all such X(f) spaces is ϕ , the space of all finite sequences.

The space X(f) is closely related to the space l_1 which is an X(f) space with f(x) = x for all real $x \ge 0$. Thus Ruckle proved that, for any modulus f

$$X(f) \subset l_1 \text{ and } X(f)^{\alpha} = l_{\infty}$$

Where

$$X(f)^{\alpha} = \{y = (y_k) \in \omega : \sum_{k=1}^{\infty} f(|y_k x_k|) < \infty\}$$

The space X(f) is a Banach space with respect to the norm

$$||x|| = \sum_{k=1}^{\infty} f(|x_k|) < \infty.(\text{See}[22]).$$

Spaces of the type X(f) are a special case of the spaces structured by B.Gramsch in[10]. From the point of view of local convexity, spaces of the type X(f) are quite interesting.

Symmetric sequence spaces, which are locally convex have been frequently studied by D.J.H Garling [8,9], G.Köthe [18].

The following subspaces of ω were first introduced and discussed by Maddox [22,23].

$$l(p) = \{x \in \omega : \sum_{k} |x_{k}|^{p_{k}} < \infty\},\$$

$$l_{\infty}(p) = \{x \in \omega : \sup_{k} |x_{k}|^{p_{k}} < \infty\},\$$

$$c(p) = \{x \in \omega : \lim_{k} |x_{k} - l|^{p_{k}} = 0, \text{ for some } l \in \mathbb{C}\},\$$

$$c_{0}(p) = \{x \in \omega : \lim_{k} |x_{k}|^{p_{k}} = 0, \},\$$

where $p = (p_k)$ is a sequence of strictly positive real numbers.

After then Lascarides [20,21] defined the following sequence spaces

$$l_{\infty}\{p\} = \left\{ x \in \omega : \text{ there exists } r > 0 \text{ such that } \sup_{k} |x_k r|^{p_k} t_k < \infty \right\},$$

Vakeel A. Khan and Nazneen Khan

$$c_0\{p\} = \left\{ x \in \omega : \text{ there exists } r > 0 \text{ such that } \lim_k |x_k r|^{p_k} t_k = 0 \right\},$$
$$l\{p\} = \left\{ x \in \omega : \text{ there exists } r > 0 \text{ such that } \sum_{k=1}^{\infty} |x_k r|^{p_k} t_k < \infty \right\},$$

where $t_k = p_k^{-1}$, for all $k \in \mathbb{N}$.

We need the following lemmas in order to establish some results of this article.

Lemma 1.10. Let $h = \inf_{k} p_{k}$ and $H = \sup_{k} p_{k}$. Then the following conditions are equivalent. (See[18]). (a) $H < \infty$ and h > 0. (b) $c_{0}(p) = c_{0}$ or $l_{\infty}(p) = l_{\infty}$. (c) $l_{\infty}\{p\} = l_{\infty}(p)$. (d) $c_{0}\{p\} = c_{0}(p)$. (e) $l\{p\} = l(p)$.

Lemma 1.11. Let $K \in \pounds(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I.(See[29,30])$.

Lemma 1.12. If $I \subset 2^X$ and $M \subseteq X$. If $M \notin I$, then $M \cap K \notin I.(See[29,30])$.

Throughout the article l_{∞} , c^{I} , c^{I}_{0} , m^{I} and m^{I}_{0} represent the bounded, I-convergent, I-null, bounded I-convergent and bounded I-null sequence spaces respectively. In this article we introduce the following classes of sequence spaces.

$${}_{2}c^{I}(f,p) = \{(x_{ij}) \in \omega : f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon \text{ for some L}\} \in I$$

$${}_{2}c^{I}_{0}(f,p) = \{(x_{ij}) \in \omega : f(|x_{ij}|^{p_{ij}}) \ge \epsilon\} \in I$$

$${}_{2}l^{I}_{\infty}(f,p) = \{(x_{ij}) \in \omega : \sup_{i,j} f(|x_{ij}|^{p_{ij}}) < \infty\} \in I$$

Also we write

$$_{2}m^{I}(f,p) = _{2}c^{I}(f,p) \cap _{2}l_{\infty}(f,p) \text{ and } _{2}m^{I}_{0}(f,p) = _{2}c^{I}_{0}(f,p) \cap _{2}l_{\infty}(f,p).$$

2. Main results

Theorem 2.1. Let $(p_{ij}) \in {}_{2}l_{\infty}$. Then ${}_{2}c^{I}(f,p), {}_{2}c^{I}_{0}(f,p), {}_{2}m^{I}(f,p)$ and ${}_{2}m^{I}_{0}(f,p)$ are linear spaces.

Proof. Let $(x_{ij}), (y_{ij}) \in_2 c^I(f, p)$ and α, β be two scalars. Then for a given $\epsilon > 0$. We have

$$\begin{cases} (i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - L_1|^{p_{ij}}) \ge \frac{\epsilon}{2M_1}, \text{ for some } L_1 \in \mathbb{C} \\ \\ \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : f(|y_{ij} - L_2|^{p_{ij}}) \ge \frac{\epsilon}{2M_2}, \text{ for some } L_2 \in \mathbb{C} \\ \end{cases} \in I \end{cases}$$

where

$$M_{1} = D.max \left\{ 1, \sup_{i,j} |\alpha|^{p_{ij}} \right\}, M_{2} = D.max \left\{ 1, \sup_{i,j} |\beta|^{p_{ij}} \right\} \text{ and } D = max \left\{ 1, 2^{H-1} \right\},$$

where $H = \sup_{i,j} p_{ij} \ge 0$. Let
$$A_{1} = \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - L_{1}|^{p_{ij}}) < \frac{\epsilon}{2M_{1}}, \text{ for some } L_{1} \in \mathcal{C} \right\} \in I$$

$$A_2 = \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : f(|y_{ij} - L_2|^{p_i j}) < \frac{\epsilon}{2M_2}, \text{ for some } L_2 \in \mathcal{C} \right\} \in I$$

be such that $A_1^c, A_2^c \in I$. Then

$$\begin{split} A_3 &= \{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|(\alpha x_{ij} + \beta y_{ij}) - f(\alpha L_1 + \beta L_2)|^{p_{ij}}) < \epsilon\} \\ &\supseteq \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : |\alpha|^{p_{ij}} f(|x_{ij} - L_1|^{p_{ij}}) < \frac{\epsilon}{2M_1} |\alpha|^{p_{ij}} . D \right\} \\ &\cap \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : |\beta|^{p_{ij}} f(|y_{ij} - L_2|^{p_{ij}}) < \frac{\epsilon}{2M_2} |\beta|^{p_{ij}} . D \right\} \end{split}$$

Thus $A_3^c = A_1^c \cap A_2^c \in I$. Hence $(\alpha x_{ij} + \beta y_{ij}) \in {}_2c^I(f, p)$. Therefore ${}_2c^I(f, p)$ is a linear space. The rest of the result follows similarly. \Box

Theorem 2.2. Let $(p_{ij}) \in {}_{2}l_{\infty}$. Then ${}_{2}m^{I}(f,p)$ and ${}_{2}m^{I}_{0}(f,p)$ are paranormed spaces, paranormed by $g(x_{ij}) = \sup_{i,j} f(|x_{ij}|^{\frac{p_{ij}}{M}})$ where $M = max\{1, \sup_{i,j} p_{ij}\}$

Proof. Let $x = (x_{ij}), y = (y_{ij}) \in {}_2m^I(f, p).$

- (1) Clearly,g(x) = 0 if and only if x = 0.
- (2) g(x) = g(-x) is obvious.

(3) Since $\frac{p_{ij}}{M} \leq 1$ and M > 1, using Minkowski's inequality and the definition of f we have

$$\sup_{i,j} f\left(\left|x_{ij}+y_{ij}\right|^{\frac{p_{ij}}{M}}\right) \le \sup_{i,j} f\left(\left|x_{ij}\right|^{\frac{p_{ij}}{M}}\right) + \sup_{i,j} f\left(\left|y_{ij}\right|^{\frac{p_{ij}}{M}}\right)$$

(4) Now for any complex λ we have (λ_{ij}) such that $\lambda_{ij} \to \lambda$, $(i, j \to \infty)$. Let $x_{ij} \in {}_2m^I(f, p)$ such that $f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon$. Therefore,

$$g(x_{ij} - L) = \sup_{i,j} f\left(|x_{ij} - L|^{\frac{p_{ij}}{M}}\right) \le \sup_{i,j} f\left(|x_{ij}|^{\frac{p_{ij}}{M}}\right) + \sup_{i,j} f\left(|L|^{\frac{p_{ij}}{M}}\right).$$

Hence $g(\lambda_{ij}x_{ij} - \lambda L) \leq g(\lambda_{ij}x_{ij}) + g(\lambda L) = \lambda_{ij}g(x_{ij}) + \lambda g(L)$ as $(i, j \to \infty)$. Hence $_2m^I(f, p)$ is a paranormed space. The rest of the result follows similarly.

Theorem 2.3. A sequence $x = (x_{ij}) \in {}_{2}m^{I}(f,p)$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N} \times \mathbb{N}$ where $N_{\epsilon} = (m,n)$, m and n depending upon ϵ such that

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - x_{N_{\epsilon}}|^{p_{ij}}) < \epsilon\} \in {}_2m^I(f,p)$$

$$\tag{1}$$

Proof. Suppose that $L = I - \lim x$. Then

$$B_{\epsilon} = \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L|^{p_{ij}} < \frac{\epsilon}{2} \right\} \in m^{I}(f,p), \text{ for all } \epsilon > 0$$

Fixing some $N_{\epsilon} \in B_{\epsilon}$, we get

$$|x_{N_{\epsilon}} - x_{ij}|^{p_{ij}} \le |x_{N_{\epsilon}} - L|^{p_{ij}} + |L - x_{ij}|^{p_{ij}} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all $(i, j) \in B_{\epsilon}$. Hence

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - x_{N_{\epsilon}}|^{p_{ij}}) < \epsilon\} \in {}_2m^I(f,p).$$

Conversely, suppose that

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - x_{N_{\epsilon}}|^{p_{ij}}) < \epsilon\} \in {}_2m^I(f,p).$$

That is $\{(i,j) \in \mathbb{N} \times \mathbb{N} : (|x_{ij} - x_{N_{\epsilon}}|^{p_{ij}}) < \epsilon\} \in {}_2m^I(f,p)$ for all $\epsilon > 0$. Then the set

$$C_{\epsilon} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \in [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]\} \in {}_{2}m^{I}(f,p) \text{ for all } \epsilon > 0.$$

Let $J_{\epsilon} = [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in {}_{2}m^{I}(f, p)$ as well as $C_{\frac{\epsilon}{2}} \in {}_{2}m^{I}(f, p)$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in {}_{2}m^{I}(f, p)$. This implies that

$$J = J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi$$

that is

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \in J\} \in _2m^1(f,p)$$

that is

$diamJ \leq diamJ_{\epsilon}$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

$$J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq I_k \supseteq \dots$$

with the property that $diamI_k \leq \frac{1}{2}diamI_{k-1}$ for (k=2,3,4,....) and $\{(i,j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \in I_k\} \in {}_2m^I(f,p)$ for (k=1,2,3,4,....). Then there exists a $\xi \in \cap I_k$ where $(i,j) \in \mathbb{N} \times \mathbb{N}$ such that $\xi = I - \lim x$. So that $f(\xi) = I - \lim f(x)$, that is $L = I - \lim f(x)$.

Theorem 2.4. Let $H = \sup_{i,j} p_{ij} < \infty$ and I be an admissible ideal. Then the following are equivalent.

(a) $(x_{ij}) \in {}_2c^I(f,p);$

(b) there $exists(y_{ij}) \in {}_2c(f,p)$ such that $x_{ij} = y_{ij}$, for a.a.k.r.I;

(c) there $exists(y_{ij}) \in {}_2c(f,p)$ and $(x_{ij}) \in {}_2c_0^I(f,p)$ such that $x_{ij} = y_{ij} + z_{ij}$ for all $(i,j) \in \mathbb{N} \times \mathbb{N}$ and $\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|y_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I;$

(d) there exists a subset $J \times K$ where $J = \{j_1, j_2, ...\}$ and $K = \{k_1 < k_2....\}$ of $\mathbb{N} \times \mathbb{N}$ such that $J \times K \in \mathcal{L}(I)$ and $\lim_{n \to \infty} f(|x_{j_n k_n} - L|^{p_{j_n k_n}}) = 0.$

Proof. (a) implies (b)

Let $(x_{ij}) \in {}_2c^I(f,p)$. Then there exists $L \in \mathbb{C}$ such that

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I.$$

Let (m_t) and (n_t) be increasing sequences with m_t and $n_t \in \mathbb{N}$ such that

$$\{(i,j) \le (m_t, n_t) : f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I.$$

Define a sequence (y_{ij}) as

$$y_{ij} = x_{ij}$$
, for all $(i, j) \le (m_1, n_1)$.

For $m_t < k \leq m_{t+1}, t \in \mathbb{N}$.

$$y_{ij} = \begin{cases} x_{ij}, & \text{if } |x_{ij} - L|^{p_{ij}} < t^{-1}, \\ L, & otherwise. \end{cases}$$

Then $(y_{ij}) \in {}_2c(f, p)$ and form the following inclusion

$$k \le m_t : x_{ij} \ne y_{ij} \} \subseteq \{(i,j) \le m_t : f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I.$$

We get $x_{ij} = y_{ij}$, for a.a.k.r.I.

(b) implies (c)

For $(x_{ij}) \in {}_2c^I(f, p)$. Then there exists $(y_{ij}) \in {}_2c(f, p)$ such that $x_{ij} = y_{ij}$, for a.a.k.r.I. Let $K = \{(i, j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \neq y_{ij}\}$, then $(i, j) \in I$. Define a sequence (z_{ij}) as

$$z_{ij} = \begin{cases} x_{ij} - y_{ij}, \text{ if } (i,j) \in K\\ 0, \quad otherwise. \end{cases}$$

,

Then $z_{ij} \in {}^{\prime}_2 c_0^I(f, p)$ and $y_{ij} \in {}_2 c(f, p)$.

$$\underbrace{\begin{array}{l} (c) \text{ implies } (d) \\ \text{Let } P_1 = \{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij}|^{p_{ij}}) \ge \epsilon\} \in I \text{ and} \\ K = P_1^c = \{(i_1,j_1) < (i_2,j_2) < (i_3,j_3) < \ldots\} \in \pounds(I). \end{array}$$

Then we have $\lim_{n \to \infty} f(|x_{i_n j_n} - L|^{p_{i_n j_n}}) = 0.$

 $\frac{(d) \text{ implies (a)}}{\text{Let } K = \{(i_1, j_1) < (i_2, j_2) < (i_3, j_3) < \dots\} \in \mathcal{L}(I) \text{ and } \lim_{n \to \infty} f(|x_{i_n j_n} - L|^{p_{i_n j_n}}) = 0. \text{ Then for an } \epsilon > 0, \text{ and Lemma 1.10, we have}$

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\} \subseteq K^c \cup \{(i,j) \in K : f(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\}.$$

Thus $(x_{ij}) \in {}_2c^I(f,p).$

Theorem 2.5. Let (p_{ij}) and (q_{ij}) be a sequence of positive real numbers. Then ${}_{2}m_{0}^{I}(f,p) \supseteq {}_{2}m_{0}^{I}(f,q)$ if and only if $\lim_{(i,j)\in K} \inf \frac{p_{ij}}{q_{ij}} > 0$, where $K^{c} \subseteq \mathbb{N} \times \mathbb{N}$ such that $K \in I$.

Proof. Let $\lim_{(i,j)\in K} \inf \frac{p_{ij}}{q_{ij}} > 0$ and $(x_{ij}) \in {}_2m_0^I(f,q)$. Then there exists $\beta > 0$ such that $p_{ij} > \beta q_{ij}$, for all sufficiently large $(i,j) \in K$. Since $(x_{ij}) \in {}_2m_0^I(f,q)$, for a given $\epsilon > 0$, we have

$$B_0 = \{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij}|^{q_{ij}}) \ge \epsilon\} \in I$$

Let $G_0 = K^c \cup B_0$ Then $G_0 \in I$. Then for all sufficiently large $(i, j) \in G_0$,

 $\{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij}|^{p_{ij}}) \ge \epsilon\} \subseteq \{(i,j) \in \mathbb{N} \times \mathbb{N} : f(|x_{ij}|^{\beta q_{ij}}) \ge \epsilon\} \in I.$ Therefore $(x_{ij}) \in _2m_0^I(f,p).$ **Corollary 2.6.** Let (p_{ij}) and (q_{ij}) be two sequences of positive real numbers. Then $_2m_0^I(f,q) \supseteq _2m_0^I(f,p)$ if and only if $\lim_{(i,j)\in K} \inf \frac{q_{ij}}{p_{ij}} > 0$, where $K^c \subseteq \mathbb{N} \times \mathbb{N}$ such that $K \in I$.

Theorem 2.7. Let (p_{ij}) and (q_{ij}) be two sequences of positive real numbers. Then $_2m_0^I(f,q) = _2m_0^I(f,p)$ if and only if $\lim_{(i,j)\in K} \inf \frac{p_{ij}}{q_{ij}} > 0$, and $\lim_{(i,j)\in K} \inf \frac{q_{ij}}{p_{ij}} > 0$, where $K \subset \mathbb{N} \times \mathbb{N}$ such that $K^c \in I$.

Proof. On combining Theorem 2.5 and 2.6 we get the required result. \Box

Theorem 2.8. Let $h = \inf_{\substack{(i,j) \ (i,j)}} p_{ij}$ and $H = \sup_{\substack{(i,j) \ (i,j)}} p_{ij}$. Then the following results are equivalent. (a) $H < \infty$ and h > 0. (b) ${}_{2}c_{0}^{I}(f,p) = {}_{2}c_{0}^{I}$.

Proof. Suppose that $H < \infty$ and h > 0, then the inequalities $min\{1, s^h\} \leq s^{p_{ij}} \leq max\{1, s^H\}$ hold for any s > 0 and for all $(i, j) \in \mathbb{N} \times \mathbb{N}$. Therefore the equivalence of (a) and (b) is obvious. \Box

Theorem 2.9. Let f be a modulus function. Then ${}_{2}c_{0}^{I}(f,p) \subset {}_{2}c^{I}(f,p) \subset {}_{2}l_{\infty}^{I}(f,p)$. The strict inclusions follow from the strict inclusion of the spaces ${}_{2}c_{0}^{I}(f) \subset {}_{2}c^{I}(f) \subset {}_{2}l_{\infty}^{I}(f)$ (see [13]).

Proof. Let $(x_{ij}) \in {}_2c^I(f,p)$. Then there exists $L \in \mathbb{C}$ such that

$$I - \lim f(|x_{ij} - L|^{p_{ij}}) = 0.$$

We have

$$f(|x_{ij}|^{p_{ij}}) \le \frac{1}{2}f(|x_{ij} - L|^{p_{ij}}) + \frac{1}{2}f(|L|^{p_{ij}}).$$

Taking supremum over (i, j) both sides we get $(x_{ij}) \in l^I_{\infty}(f, p)$ and the inclusion ${}_2c^I_0(f, p) \subset {}_2c^I(f, p)$ is obvious. Hence ${}_2c^I_0(f, p) \subset {}_2c^I(f, p) \subset {}_2l^I_{\infty}(f, p)$ and the inclusions are proper.

Theorem 2.10. If $H = \sup_{i,j} p_{ij} < \infty$, then for any modulus f, we have

 $_{2}l_{\infty}^{I} \subset M(m^{I}(f,p))$, where the inclusion may be proper.

Proof. Let $a \in {}_{2}l_{\infty}^{I}$. This implies that $\sup_{i,j} |a_{ij}| < 1 + K$. for some K > 0 and all (i, j). Therefore $x = (x_{ij}) \in {}_{2}m^{I}(f, p)$ implies

(1) Therefore $x = (x_{ij}) \in 2^{m}(j, p)$ implies

$$\sup_{i,j} f(|a_{ij}x_{ij}|^{p_{ij}}) \le (1+K)^H \sup_{i,j} f(|x_{ij}|^{p_{ij}}) < \infty.$$

which gives $_{2}l_{\infty}^{I} \subset M(_{2}m^{I}(f,p))$. To show that the inclusion may be proper, consider the case when $p_{ij} = \frac{1}{(ij)}$ for all (i,j). Take $a_{ij} = (i \times j)$ for all (i,j). Therefore $x \in _{2}m^{I}(f,p)$ implies

$$\sup_{i,j} f(|a_{ij}x_{ij}|^{p_{ij}}) \leq \sup_{i,j} f(|i \times j|^{\frac{1}{(ij)}}) \sup_{i,j} f(|x_{ij}|^{\frac{1}{ij}}) < \infty.$$

Thus in this case $a = (a_{ij}) \in M(\ _2m^I(f,p))$ while $a \notin \ _2l_{\infty}^I.$

Theorem 2.11. The function $\hbar : {}_{2}m^{I}(f,p) \to \mathbf{R}$ is the Lipschitz function, where ${}_{2}m^{I}(f,p) = {}_{2}c^{I}(f,p) \cap {}_{2}l_{\infty}(f,p)$, and hence uniformly continuous.

Proof. Let $x, y \in {}_2m^I(f, p), x \neq y$. Then the sets

$$A_{x} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - \hbar(x)|^{p_{ij}} \ge ||x - y||\} \in I,$$

$$A_{y} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |y_{ij} - \hbar(y)|^{p_{ij}} \ge ||x - y||\} \in I.$$

Here $||x - y|| = \sup_{i,j} f(|x_{ij} - y_{ij}|^{\frac{p_{ij}}{M}})$ where $M = max\{1, \sup_{i,j} p_{ij}\}$ Thus the sets,

$$B_x = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - \hbar(x)|^{p_{ij}} < ||x - y||\} \in {}_2m^I(f,p),$$

$$B_y = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |y_{ij} - \hbar(y)|^{p_{ij}} < ||x - y||\} \in {}_2m^1(f,p).$$

Hence also $B = B_x \cap B_y \in {}_2m^I(f,p)$, so that $B \neq \phi$. Now taking (i,j) in B such that

$$|\hbar(x) - \hbar(y)|^{p_{ij}} \le |\hbar(x) - x_{ij}|^{p_{ij}} + |x_{ij} - y_{ij}|^{p_{ij}} + |y_{ij} - \hbar(y)|^{p_{ij}} \le 3||x - y||.$$

Thus \hbar is a Lipschitz function. For $_2m_0^I(f,p)$ the result can be proved similarly.

Theorem 2.12. If $x, y \in {}_2m^I(f, p)$, then $(x.y) \in {}_2m^I(f, p)$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

Proof. For $\epsilon > 0$

$$B_x = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - \hbar(x)|^{p_{ij}} < \epsilon\} \in {}_2m^I(f,p),$$

$$B_y = \{(i,j) \in \mathbb{N} \times \mathbb{N} : |y_{ij} - \hbar(y)|^{p_{ij}} < \epsilon\} \in {}_2m^I(f,p).$$

Now,

$$|x_{ij}y_{ij} - \hbar(x)\hbar(y)|^{p_{ij}} = |x_{ij}y_{ij} - x_{ij}\hbar(y) + x_{ij}\hbar(y) - \hbar(x)\hbar(y)|^{p_{ij}}$$
$$\leq |x_{ij}|^{p_{ij}}|y_{ij} - \hbar(y)|^{p_{ij}} + |\hbar(y)|^{p_{ij}}|x_{ij} - \hbar(x)|^{p_{ij}} (2)$$

As $_2m^I(f,p) \subseteq l_{\infty}(f,p)$, there exists an $M \in \mathbb{R}$ such that $|x_{ij}|^{p_{ij}} < M$ and $|\hbar(y)|^{p_k} < M$. Using eqn(2) we get

$$|x_{ij}y_{ij} - \hbar(x)\hbar(y)|^{p_{ij}} \le M\epsilon + M\epsilon = 2M\epsilon$$

For all $(i, j) \in B_x \cap B_y \in {}_2m^I(f.p)$. Hence $(x.y) \in m^I(f,p)$ and $\hbar(xy) = \hbar(x)\hbar(y)$. For ${}_2m_0^I(f,p)$ the result can be proved similarly. \Box

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- 1. T.J.I. Bromwich, An Introduction to the Theory of Infinite Series, MacMillan and Co.Limited, New York, (1965).
- M. Basarir, and O. Solancan, On Some Double Sequence Spaces, Journal of Indian Acad.Math., 21(2),(1999), 193-200.
- K. Demirci, *I-limit superior and limit inferior*, Mathematical Communications, 6,(2001), 165-172.
- 4. K. Dems, On I-Cauchy sequences, Real Analysis Exchange, 30(2005),123-128.
- 5. H. Fast, Sur la convergence statistique, Colloqium Mathematicum, 2(1),(1951),41-244.
- 6. J.A. Fridy, On statistical convergence, Analysis, 5,(1985), 301-313.
- J.A. Fridy, Statistical limit points, Proceedings American Mathematical Society, 11(1993), 1187-1192.
- D.J.H. Garling, On Symmetric Sequence Spaces, Proceedings of London Mathematical Society, 16,(1966), 85-106.
- D.J.H. Garling, Symmetric bases of locally convex spaces, Studia Mathematica, 30,(1968),163-181.
- 10. B. Gramsch, Die Klasse metrisher linearer Raume $L(\phi)$, Mathematische Annalen., **171**,(1967), pp.61-78.
- 11. M. Gurdal, *Some Types Of Convergence*, Doctoral Dissertation, S.Demirel Univ., Isparta, (2004).
- Vakeel A. Khan and K. Ebadullah, On some I-Convergent sequence spaces defined by a modulus function. Theory and Applications of Mathematics and Computer Science.1(2),(2011),22-30,
- Vakeel A. Khan and K. Ebadullah, On a new difference sequence space of invariant means defined by Orlicz functions, Bulletin Of The Allahabad Mathematical Society.26(2)(2011),259-272.
- Vakeel A. Khan and Nazneen Khan, I-Pre Cauchy double sequences and Orlicz function., Engineering, Scientific Research, 5(2013), 52-56.
- 15. Vakeel A. Khan and Nazneen Khan, On a new I-Convergent double sequence spaces. International Journal of Analysis, Hindawi Publishing Corporation, (2013),1-7.
- Vakeel A. Khanand Nazneen Khan, On some I-Convergent double sequence spaces defined by sequence of modulii. Ilirias Journal of Mathematics 4(2), (2013), 1-8.
- Vakeel A. Khan and Nazneen Khan, On some I-Convergent double sequence spaces defined by a modulus function, Engineering, Scientific Research, 5 (2013), 35-40.
- 18. G. Kothe, Topological Vector spaces, Springer, Berlin, (1970).
- P. Kostyrko, T. Salat, W. Wilczynski, *I-convergence*, Real Analysis Exchange, 26(2)(1999),193-200.
- C.G. Lascarides, A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer, Pacific J. Math.38(1971),487-500.
- 21. C.G. Lascarides, On the equivalence of certain sets of sequences, Indian J. Math., **25**(1983),41-52.
- 22. I.J. Maddox, Elements of Functional Analysis, Cambridge University Press, (1970).
- I.J. Maddox, Some properties of paranormed sequence spaces, the Journal of the London Mathematical Society 1 (1969),316-322.
- 24. H. Nakano, Concave modulars, Journal of Mathematical Society. Japan, 5(1953),29-49.
- W.H. Ruckle, On perfect Symmetric BK-spaces, Mathematische Annalen, 175, (1968), 121-126.
- W.H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canadian Journal of Mathematics, 25(5),(1973),973-975.
- W.H. Ruckle, Symmetric coordinate spaces and symmetric bases, Canadian Journal of Mathematics, 19 (1967), 828-838.
- 28. S. Simons, The spaces $l_{(p_{\nu})}$ and $m_{(p_{\nu})}$, Proc.London. Math.Soc. **15(3)** (1965),422-436.

- 29. T. Salat, B.C. Tripathy, M. Ziman, On some properties of I-convergence Tatra Mountain Mathematical publications, (2000),669-686.
- B.C. Tripathy and B. Hazarika, Some I-Convergent sequence spaces defined by Orlicz function, Acta Mathematicae Applicatae Sinica. 27(1) (2011),149-154.

Vakeel A. Khan received M.Sc., M.Phil and Ph.D at Aligarh Muslim University. He is currently an Associate Professor at Aligarh Muslim University. He has published a number of research articles and some books to his name. His research interests include Functional Analysis, sequence spaces, I-convergence, invariant meanszweir sequences and so on.

Department of Mathematics, Aligarh Muslim University, Aligarh, 200-002, India. vakhanmaths@gmail.com

Nazneen Khan received M.Sc. and M.Phil. from Aligarh Muslim University, and is currently a Ph.D. scholar at Aligarh Muslim University. Her research interests are Functional Analysis, sequence spaces and double sequences.

Department of Mathematics, Aligarh Muslim University, Aligarh, 200-002, India. nazneen4maths@gmail.com