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Abstract. In this article we introduce the sequence spaces 2cI0(f, p), 2c
I(f, p)

and 2lI∞(f, p) for a modulus function f , where p = (pk) is a sequence of
positive reals and study some of the properties of these spaces.
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1. Introduction

The notion of I-Convergence is a generalization of the concept of statistical
convergence which was first introduced by H.Fast [5] and later on studied by
various mathematicians like J.A.Fridy [6,7], Kostyrko, Salat and Wilezynski [19],
Salat, Tripathy, Ziman [29] and Demirci [3].

Also a double sequence is a double infinite array of elements xkl ∈ R for all
k, l ∈ N (see [14,15]). The initial works on double sequences is found in Bromwich
[1], Basarir and Solancan [2] and many others. Throughout this article a double
sequence is denoted by x = (xij).
Next we discuss some preliminaries about I-convergence (see [12],[30]).

Let X be a non empty set. Then a family of sets I⊆ 2X (power set of X) is
said to be an ideal if I is additive i.e A,B∈I ⇒A∪ B∈I and hereditary i.e A∈I,
B⊆A⇒B∈I.

A non-empty family of sets £(I) ⊆ 2X is said to be filter on X if and only if
Φ /∈ £(I), for A,B∈ £(I) we have A∩B∈ £(I) and for each A ∈ £(I)and A⊆B
implies B∈ £(I). An Ideal I⊆ 2X is called non-trivial if I ̸= 2X . A non-trivial
ideal I⊆ 2X is called admissible if {x : {x} ∈ X} ⊆I.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J̸=I
containing I as a subset. For each ideal I, there is a filter £(I) corresponding to
I. i.e £(I) = {K ⊆ N : Kc ∈ I},where Kc = N-K.
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Definition 1.1. A double sequence (xij) ∈ ω is said to be I-convergent to a
number L if for every ϵ > 0. {(i, j) ∈ IN × IN : |xij − L| ≥ ϵ} ∈ I. In this case we
write I-limxij = L. (see [17])

The space 2c
I of all I-convergent sequences to L is given by

2c
I = {(xij) ∈ ω : {(i, j) ∈ IN × IN : |xij − L| ≥ ϵ} ∈ I, for some L∈ C}

Definition 1.2. A sequence (xij) ∈ ω is said to be I-null if L = 0. In this case
we write I-limxij = 0.

Definition 1.3. A sequence (xij) ∈ ω is said to be I-cauchy if for every ϵ > 0
there exists a number m = m(ϵ) and n = n(ϵ) such that

{(i, j) ∈ IN × IN : |xij − xmn| ≥ ϵ} ∈ I

.

Definition 1.4. A sequence (xij) ∈ ω is said to be I-bounded if there exists M
>0 such that {(i, j) ∈ IN × IN : |xij | > M}.

Definition 1.5. Let (xij), (yij) be two sequences. We say that (xij) = (yij) for
almost all (i,j) relative to I (a.a.k.r.I), if {(i, j) ∈ IN × IN : xij ̸= yij} ∈ I

Definition 1.6. For any set E of sequences the space of multipliers of E, denoted
by M(E) is given by

M(E) = {a ∈ ω : ax ∈ E for all x ∈ E}(see[28]).

Definition 1.7. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X → IR is said
to satisfy Lipschitz condition if |~(x)−~(y)| ≤ K|x−y| where Kis known as the
Lipschitz constant.The class of K-Lipschitz functions defined on D is denoted by
~ ∈ (D,K).

Definition 1.8. A convergence field of I-convergence is a set

F (I) = {x = (xij) ∈ l∞ : there exists I − limx ∈ IR}.

The convergence field F (I) is a closed linear subspace of l∞ with respect to
the supremum norm, F (I) = l∞ ∩ 2c

I(See[23]).
Define a function ~ : F (I) → IR such that ~(x) = I − limx, for all x ∈ F (I),

then the function ~ : F (I) → IR is a Lipschitz function ([11,4,13]).

Definition 1.9. The concept of paranorm is closely related to linear metric
spaces [16]. It is a generalization of that of absolute value.
Let X be a linear space. A function g : X −→ R is called paranorm, if for all
x, y, z ∈ X,
(PI) g(x) = 0 if x = θ, (P2) g(−x) = g(x), (P3) g(x+ y) ≤ g(x) + g(y),
(P4) If (λn) is a sequence of scalars with λn → λ (n → ∞) and xn, a ∈ X with
xn → a (n → ∞) , in the sense that g(xn − a) → 0 (n → ∞) , in the sense that
g(λnxn − λa) → 0 (n → ∞).



On some generalised I-convergent double sequence spaces defined by a modulus function 333

A paranorm g for which g(x) = 0 implies x = θ is called a total paranorm
on X, and the pair (X, g) is called a totally paranormed space.(See[23]). The
idea of modulus was structured in 1953 by Nakano.(See[24]). A function f :
[0,∞)−→[0,∞) is called a modulus if
(1) f(t) = 0 if and only if t = 0, (2) f(t+u)≤ f(t)+ f(u) for all t,u≥0,
(3) f is increasing and (4) f is continuous from the right at zero.

Ruckle in [25,26,27] used the idea of a modulus function f to construct the
sequence space

X(f) = {x = (xk) :
∞∑
k=1

f(|xk|) < ∞}

This space is an FK space ,and Ruckle proved that the intersection of all such
X(f) spaces is ϕ, the space of all finite sequences.
The space X(f) is closely related to the space l1 which is an X(f) space with
f(x) = x for all real x ≥ 0. Thus Ruckle proved that,for any modulus f

X(f) ⊂ l1 and X(f)α = l∞

Where

X(f)α = {y = (yk) ∈ ω :
∞∑
k=1

f(|ykxk|) < ∞}

The space X(f) is a Banach space with respect to the norm

||x|| =
∞∑
k=1

f(|xk|) < ∞.(See[22]).

Spaces of the type X(f) are a special case of the spaces structured by B.Gramsch
in[10]. From the point of view of local convexity, spaces of the type X(f) are
quite interesting.

Symmetric sequence spaces, which are locally convex have been frequently
studied by D.J.H Garling [8,9], G.Köthe [18].

The following subspaces of ω were first introduced and discussed by Maddox
[22,23].

l(p) = {x ∈ ω :
∑
k

|xk|pk < ∞},

l∞(p) = {x ∈ ω : sup
k

|xk|pk < ∞},

c(p) = {x ∈ ω : lim
k

|xk − l|pk = 0, for some l ∈ C},

c0(p) = {x ∈ ω : lim
k

|xk|pk = 0, },

where p = (pk) is a sequence of striclty positive real numbers.
After then Lascarides[20,21] defined the following sequence spaces

l∞{p} =

{
x ∈ ω : there exists r > 0 such that sup

k
|xkr|pk tk < ∞

}
,
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c0{p} =

{
x ∈ ω : there exists r > 0 such that lim

k
|xkr|pktk = 0

}
,

l{p} =

{
x ∈ ω : there exists r > 0 such that

∞∑
k=1

|xkr|pktk < ∞

}
,

where tk = p−1
k , for all k ∈ IN .

We need the following lemmas in order to establish some results of this article.

Lemma 1.10. Let h = inf
k
pk and H = sup

k
pk. Then the following conditions

are equivalent.(See[18]).
(a) H < ∞ and h > 0. (b) c0(p) = c0 or l∞(p) = l∞. (c) l∞{p} = l∞(p).
(d) c0{p} = c0(p). (e) l{p} = l(p).

Lemma 1.11. Let K∈ £(I) and M⊆N. If M/∈I, then M∩K /∈I.(See[29,30]).
Lemma 1.12. If I ⊂ 2X and M⊆X. If M /∈I, then M∩K /∈I.(See[29,30]).

Throughout the article l∞, cI , cI0,m
I andmI

0 represent the bounded , I-convergent,
I-null, bounded I-convergent and bounded I-null sequence spaces respectively. In
this article we introduce the following classes of sequence spaces.

2c
I(f, p) = {(xij) ∈ ω : f(|xij − L|pij ) ≥ ϵ for some L} ∈ I

2c
I
0(f, p) = {(xij) ∈ ω : f(|xij |pij ) ≥ ϵ} ∈ I

2l
I
∞(f, p) = {(xij) ∈ ω : sup

i,j
f(|xij |pij ) < ∞} ∈ I

Also we write

2m
I(f, p) = 2c

I(f, p) ∩ 2l∞(f, p) and 2m
I
0(f, p) = 2c

I
0(f, p) ∩ 2l∞(f, p).

2. Main results

Theorem 2.1. Let (pij) ∈ 2l∞. Then 2c
I(f, p), 2c

I
0(f, p), 2m

I(f, p) and

2m
I
0(f, p) are linear spaces.

Proof. Let (xij), (yij) ∈2 cI(f, p) and α, β be two scalars. Then for a given ϵ > 0.
We have{

(i, j) ∈ IN × IN : f(|xij − L1|pij ) ≥ ϵ

2M1
, for some L1 ∈ C

}
∈ I{

(i, j) ∈ IN × IN : f(|yij − L2|pij ) ≥ ϵ

2M2
, for some L2 ∈ C

}
∈ I

where

M1 = D.max

{
1, sup

i,j
|α|pij

}
, M2 = D.max

{
1, sup

i,j
|β|pij

}
and D = max

{
1, 2H−1

}
,

where H = sup
i,j

pij ≥ 0. Let

A1 =

{
(i, j) ∈ IN × IN : f(|xij − L1|pij ) <

ϵ

2M1
, for some L1 ∈ C

}
∈ I
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A2 =

{
(i, j) ∈ IN × IN : f(|yij − L2|pij) <

ϵ

2M2
, for some L2 ∈ C

}
∈ I

be such that Ac
1, A

c
2 ∈ I. Then

A3 = {(i, j) ∈ IN × IN : f(|(αxij + βyij)− f(αL1 + βL2)|pij ) < ϵ}

⊇
{
(i, j) ∈ IN × IN : |α|pijf(|xij − L1|pij ) <

ϵ

2M1
|α|pij .D

}
∩
{
(i, j) ∈ IN × IN : |β|pijf(|yij − L2|pij ) <

ϵ

2M2
|β|pij .D

}
Thus Ac

3 = Ac
1 ∩Ac

2 ∈ I. Hence (αxij + βyij) ∈ 2c
I(f, p). Therefore 2c

I(f, p) is
a linear space. The rest of the result follows similarly. �

Theorem 2.2. Let (pij) ∈ 2l∞. Then 2m
I(f, p) and 2m

I
0(f, p) are paranormed

spaces, paranormed by g(xij) = sup
i,j

f(|xij |
pij
M ) where M = max{1, sup

i,j
pij}

Proof. Let x = (xij), y = (yij) ∈ 2m
I(f, p).

(1) Clearly,g(x) = 0 if and only if x = 0.
(2) g(x) = g(−x) is obvious.
(3) Since

pij

M ≤ 1 and M > 1,using Minkowski’s inequality and the definition of
f we have

sup
i,j

f
(
|xij + yij |

pij
M

)
≤ sup

i,j
f
(
|xij |

pij
M

)
+ sup

i,j
f
(
|yij |

pij
M

)
(4) Now for any complex λ we have (λij) such that λij → λ, (i, j → ∞).
Let xij ∈ 2m

I(f, p) such that f(|xij − L|pij ) ≥ ϵ.
Therefore,

g(xij − L) = sup
i,j

f
(
|xij − L|

pij
M

)
≤ sup

i,j
f
(
|xij |

pij
M

)
+ sup

i,j
f
(
|L|

pij
M

)
.

Hence g(λijxij − λL) ≤ g(λijxij) + g(λL) = λijg(xij) + λg(L) as (i, j → ∞).
Hence 2m

I(f, p) is a paranormed space. The rest of the result follows similarly.
�

Theorem 2.3. A sequence x = (xij) ∈ 2m
I(f, p) I-converges if and only if for

every ϵ > 0 there exists Nϵ ∈ IN × IN where Nϵ = (m,n), m and n depending
upon ϵ such that

{(i, j) ∈ IN × IN : f(|xij − xNϵ |pij ) < ϵ} ∈ 2m
I(f, p) (1)

Proof. Suppose that L = I − limx. Then

Bϵ =
{
(i, j) ∈ IN × IN : |xij − L|pij <

ϵ

2

}
∈ mI(f, p), for all ϵ > 0.

Fixing some Nϵ ∈ Bϵ, we get

|xNϵ
− xij |pij ≤ |xNϵ

− L|pij + |L− xij |pij <
ϵ

2
+

ϵ

2
= ϵ
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which holds for all (i, j) ∈ Bϵ. Hence

{(i, j) ∈ IN × IN : f(|xij − xNϵ |pij ) < ϵ} ∈ 2m
I(f, p).

Conversely, suppose that

{(i, j) ∈ IN × IN : f(|xij − xNϵ |pij ) < ϵ} ∈ 2m
I(f, p).

That is {(i, j) ∈ IN × IN : (|xij − xNϵ |pij ) < ϵ} ∈ 2m
I(f, p) for all ϵ > 0. Then

the set

Cϵ = {(i, j) ∈ IN × IN : xij ∈ [xNϵ − ϵ, xNϵ + ϵ]} ∈ 2m
I(f, p) for all ϵ > 0.

Let Jϵ = [xNϵ − ϵ, xNϵ + ϵ]. If we fix an ϵ > 0 then we have Cϵ ∈ 2m
I(f, p) as

well as C ϵ
2
∈ 2m

I(f, p). Hence Cϵ ∩ C ϵ
2
∈ 2m

I(f, p). This implies that

J = Jϵ ∩ J ϵ
2
̸= ϕ

that is
{(i, j) ∈ IN × IN : xij ∈ J} ∈ 2m

I(f, p)

that is
diamJ ≤ diamJϵ

where the diam of J denotes the length of interval J. In this way, by induction
we get the sequence of closed intervals

Jϵ = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤ 1
2diamIk−1 for (k=2,3,4,.....) and

{(i, j) ∈ IN × IN : xij ∈ Ik} ∈ 2m
I(f, p) for (k=1,2,3,4,......).

Then there exists a ξ ∈ ∩Ik where (i, j) ∈ IN × IN such that ξ = I − limx. So
that f(ξ) = I − lim f(x), that is L = I − lim f(x). �
Theorem 2.4. Let H = sup

i,j
pij < ∞ and I be an admissible ideal. Then the

following are equivalent.
(a) (xij) ∈ 2c

I(f, p);
(b) there exists(yij) ∈ 2c(f, p) such that xij = yij, for a.a.k.r.I;
(c) there exists(yij) ∈ 2c(f, p) and (xij) ∈ 2c

I
0(f, p) such that xij = yij + zij

for all (i, j) ∈ IN × IN and {(i, j) ∈ IN × IN : f(|yij − L|pij ) ≥ ϵ} ∈ I;
(d) there exists a subset J ×K where J = {j1, j2, ...} and K = {k1 < k2....}

of IN × IN such that J ×K ∈ £(I) and lim
n→∞

f(|xjnkn − L|pjnkn ) = 0.

Proof. (a) implies (b)

Let (xij) ∈ 2c
I(f, p). Then there exists L ∈ Csuch that

{(i, j) ∈ IN × IN : f(|xij − L|pij ) ≥ ϵ} ∈ I.

Let (mt) and (nt) be increasing sequences with mt and nt ∈ IN such that

{(i, j) ≤ (mt, nt) : f(|xij − L|pij ) ≥ ϵ} ∈ I.

Define a sequence (yij) as

yij = xij , for all (i, j) ≤ (m1, n1).
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For mt < k ≤ mt+1, t ∈ IN.

yij =

{
xij , if |xij − L|pij < t−1,

L, otherwise.

Then (yij) ∈ 2c(f, p) and form the following inclusion

{k ≤ mt : xij ̸= yij} ⊆ {(i, j) ≤ mt : f(|xij − L|pij ) ≥ ϵ} ∈ I.

We get xij = yij , for a.a.k.r.I.

(b) implies (c)

For (xij) ∈ 2c
I(f, p). Then there exists (yij) ∈ 2c(f, p) such that xij = yij , for

a.a.k.r.I. Let K = {(i, j) ∈ IN × IN : xij ̸= yij}, then (i, j) ∈ I.
Define a sequence (zij) as

zij =

{
xij − yij , if (i, j) ∈ K,

0, otherwise.

Then zij ∈ ‘2c
I
0(f, p) and yij ∈ 2c(f, p).

(c) implies (d)

Let P1 = {(i, j) ∈ IN × IN : f(|xij |pij ) ≥ ϵ} ∈ I and

K = P c
1 = {(i1, j1) < (i2, j2) < (i3, j3) < ...} ∈ £(I).

Then we have lim
n→∞

f(|xinjn − L|pinjn ) = 0.

(d) implies (a)

LetK = {(i1, j1) < (i2, j2) < (i3, j3) < ...} ∈ £(I) and lim
n→∞

f(|xinjn−L|pinjn ) =

0. Then for an ϵ > 0, and Lemma 1.10, we have

{(i, j) ∈ IN × IN : f(|xij − L|pij ) ≥ ϵ} ⊆ Kc ∪ {(i, j) ∈ K : f(|xij − L|pij ) ≥ ϵ}.
Thus (xij) ∈ 2c

I(f, p). �
Theorem 2.5. Let (pij) and (qij) be a sequence of positive real numbers. Then

2m
I
0(f, p) ⊇ 2m

I
0(f, q) if and only if lim

(i,j)∈K
inf

pij

qij
> 0, where Kc ⊆ IN × IN such

that K ∈ I.

Proof. Let lim
(i,j)∈K

inf
pij

qij
> 0 and (xij) ∈ 2m

I
0(f, q). Then there exists β > 0

such that pij > βqij , for all sufficiently large (i, j) ∈ K.
Since (xij) ∈ 2m

I
0(f, q), for a given ϵ > 0, we have

B0 = {(i, j) ∈ IN × IN : f(|xij |qij ) ≥ ϵ} ∈ I

Let G0 = Kc ∪B0 Then G0 ∈ I. Then for all sufficiently large (i, j) ∈ G0,

{(i, j) ∈ IN × IN : f(|xij |pij ) ≥ ϵ} ⊆ {(i, j) ∈ IN × IN : f(|xij |βqij ) ≥ ϵ} ∈ I.

Therefore (xij) ∈ 2m
I
0(f, p). �
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Corollary 2.6. Let (pij) and (qij) be two sequences of positive real numbers.
Then 2m

I
0(f, q) ⊇ 2m

I
0(f, p) if and only if lim

(i,j)∈K
inf

qij
pij

> 0, where Kc ⊆ IN ×IN

such that K ∈ I.

Theorem 2.7. Let (pij) and (qij) be two sequences of positive real numbers.
Then 2m

I
0(f, q) = 2m

I
0(f, p) if and only if lim

(i,j)∈K
inf

pij

qij
> 0, and lim

(i,j)∈K
inf

qij
pij

>

0, where K ⊆ IN × IN such that Kc ∈ I.

Proof. On combining Theorem 2.5 and 2.6 we get the required result. �
Theorem 2.8. Let h = inf

(i,j)
pij and H = sup

(i,j)

pij . Then the following results are

equivalent. (a) H < ∞ and h > 0. (b) 2c
I
0(f, p) = 2c

I
0.

Proof. Suppose that H < ∞ and h > 0,then the inequalities min{1, sh} ≤
spij ≤ max{1, sH} hold for any s > 0 and for all (i, j) ∈ IN × IN. Therefore the
equivalence of (a) and (b) is obvious. �
Theorem 2.9. Let f be a modulus function. Then 2c

I
0(f, p) ⊂ 2c

I(f, p) ⊂ 2l
I
∞(f, p).

The strict inclusions follow from the strict inclusion of the spaces

2c
I
0(f) ⊂ 2c

I(f) ⊂ 2l
I
∞(f) (see [13]).

Proof. Let (xij) ∈ 2c
I(f, p). Then there exists L ∈ C such that

I − lim f(|xij − L|pij ) = 0.

We have

f(|xij |pij ) ≤ 1

2
f(|xij − L|pij ) +

1

2
f(|L|pij ).

Taking supremum over (i, j) both sides we get (xij) ∈ lI∞(f, p) and the inclusion

2c
I
0(f, p) ⊂ 2c

I(f, p) is obvious. Hence 2c
I
0(f, p) ⊂ 2c

I(f, p) ⊂ 2l
I
∞(f, p) and

the inclusions are proper. �
Theorem 2.10. If H = sup

i,j
pij < ∞,then for any modulus f , we have

2l
I
∞ ⊂ M(mI(f, p)), where the inclusion may be proper.

Proof. Let a ∈ 2l
I
∞.This implies that sup

i,j
|aij | < 1 +K. for some K > 0 and all

(i, j). Therefore x = (xij) ∈ 2m
I(f, p) implies

sup
i,j

f(|aijxij |pij ) ≤ (1 +K)H sup
i,j

f(|xij |pij ) < ∞.

which gives 2l
I
∞ ⊂ M( 2m

I(f, p)). To show that the inclusion may be proper,
consider the case when pij = 1

(ij) for all (i, j). Take aij = (i × j) for all (i, j).

Therefore x ∈ 2m
I(f, p) implies

sup
i,j

f(|aijxij |pij ) ≤ sup
i,j

f(|i× j|
1

(ij) ) sup
i,j

f(|xij |
1
ij ) < ∞.

Thus in this case a = (aij) ∈ M( 2m
I(f, p)) while a /∈ 2l

I
∞. �
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Theorem 2.11. The function ~ : 2m
I(f, p) → IR is the Lipschitz function,where

2m
I(f, p) = 2c

I(f, p) ∩ 2l∞(f, p), and hence uniformly continuous.

Proof. Let x, y ∈ 2m
I(f, p),x ̸= y. Then the sets

Ax = {(i, j) ∈ IN × IN : |xij − ~(x)|pij ≥ ||x− y||} ∈ I,

Ay = {(i, j) ∈ IN × IN : |yij − ~(y)|pij ≥ ||x− y||} ∈ I.

Here ||x− y|| = sup
i,j

f(|xij − yij |
pij
M ) where M = max{1, sup

i,j
pij}

Thus the sets,

Bx = {(i, j) ∈ IN × IN : |xij − ~(x)|pij < ||x− y||} ∈ 2m
I(f, p),

By = {(i, j) ∈ IN × IN : |yij − ~(y)|pij < ||x− y||} ∈ 2m
I(f, p).

Hence also B = Bx ∩ By ∈ 2m
I(f, p), so that B ̸= ϕ. Now taking (i, j) in B

such that

|~(x)− ~(y)|pij ≤ |~(x)− xij |pij + |xij − yij |pij + |yij − ~(y)|pij ≤ 3||x− y||.

Thus ~ is a Lipschitz function. For 2m
I
0(f, p) the result can be proved similarly.

�

Theorem 2.12. If x, y ∈ 2m
I(f, p),then (x.y) ∈ 2m

I(f, p) and ~(xy) =
~(x)~(y).

Proof. For ϵ > 0

Bx = {(i, j) ∈ IN × IN : |xij − ~(x)|pij < ϵ} ∈ 2m
I(f, p),

By = {(i, j) ∈ IN × IN : |yij − ~(y)|pij < ϵ} ∈ 2m
I(f, p).

Now,

|xijyij − ~(x)~(y)|pij = |xijyij − xij~(y) + xij~(y)− ~(x)~(y)|pij

≤ |xij |pij |yij − ~(y)|pij + |~(y)|pij |xij − ~(x)|pij (2)

As 2m
I(f, p) ⊆ l∞(f, p),there exists an M ∈ IR such that |xij |pij < M and

|~(y)|pk < M . Using eqn(2) we get

|xijyij − ~(x)~(y)|pij ≤ Mϵ+Mϵ = 2Mϵ

For all (i, j) ∈ Bx ∩ By ∈ 2m
I(f.p). Hence (x.y) ∈ mI(f, p) and ~(xy) =

~(x)~(y). For 2m
I
0(f, p) the result can be proved similarly. �
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