• Title/Summary/Keyword: F(p, q, s) space

Search Result 18, Processing Time 0.035 seconds

WEIGHTED COMPOSITION OPERATORS FROM F(p, q, s) INTO LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.977-991
    • /
    • 2008
  • We characterize the boundedness and compactness of the weighted composition operator $uC_{\psi}$ from the general function space F(p, q, s) into the logarithmic Bloch space ${\beta}_L$ on the unit disk. Some necessary and sufficient conditions are given for which $uC_{\psi}$ is a bounded or a compact operator from F(p,q,s), $F_0$(p,q,s) into ${\beta}_L$, ${\beta}_L^0$ respectively.

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).

RESOLVENT INEQUALITY OF LAPLACIAN IN BESOV SPACES

  • Han, Hyuk;Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.117-121
    • /
    • 2009
  • For $1{\leq}p$, $q{\leq}{\infty}$ and $s{\in}\mathbb{R}$, it is proved that there exists a constant C > 0 such that for any $f{\in}B^{s+2}_{p,q}(\mathbb{R}^n)$ $${\parallel}f{\parallel}_{B^{s+2}_{p,q}(\mathbb{R}^n)}{\leq}C{\parallel}f\;-\;{\Delta}f{\parallel}_{B^{s}_{p,q}(\mathbb{R}^n)}$$, which tells us that the operator $I-\Delta$ is $B^{s+2}_{p,q}$-coercive on the Besov space $B^s_{p,q}$.

  • PDF

Equivalence-Singularity Dichotomies of Gaussian and Poisson Processes from The Kolmogorov's Zero-One Law

  • Park, Jeong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.367-378
    • /
    • 1994
  • Let P and Q be probability measures of a measurable space $(\Omega, F)$, and ${F_n}_{n \geq 1}$ be a sequence of increasing sub $\sigma$-fields which generates F. For each $n \geq 1$, let $P_n$ and $Q_n$ be the restrictions of P and Q to $F_n$, respectively. Under the assumption that $Q_n \ll P_n$ for every $n \geq 1$, a zero-one condition is derived for P and Q to have the dichotomy, i.e., either $Q \ll P$ or $Q \perp P$. Then using this condition and the Kolmogorov's zero-one law, we give new and simple proofs of the dichotomy theorems for a pair of Gaussian measures and Poisson processes with examples.

  • PDF

$L^p$ 공간의 가분성에 관한 연구

  • 김만호
    • The Mathematical Education
    • /
    • v.21 no.3
    • /
    • pp.7-11
    • /
    • 1983
  • A measurable function f defined on a measurable subset A of the real line R is called pth power summable on A if │f│$^{p}$ is integrable on A and the set of all pth power summable functions on A is denoted by L$^{p}$ (A). For each member f in L$^{p}$ (A), we define ∥f∥$_{p}$ =(equation omitted) For real numbers p and q where (equation omitted) and (equation omitted), we discuss the Holder's inequality ∥fg∥$_1$<∥f∥$_{p}$ ∥g∥$_{q}$ , f$\in$L$^{p}$ (A), g$\in$L$^{q}$ (A) and the Minkowski inequality ∥+g∥$_{p}$ <∥f∥$_{p}$ +∥g∥$_{p}$ , f,g$\in$L$^{p}$ (A). In this paper also discuss that L$_{p}$ (A) becomes a metric space with the metric $\rho$ : L$^{p}$ (A) $\times$L$^{p}$ (A) longrightarrow R where $\rho$(f,g)=∥f-g∥$_{p}$ , f,g$\in$L$^{p}$ (A). Then, in this paper prove the Riesz-Fischer theorem, i.e., the space L$^{p}$ (A) is complete and that the space L$^{p}$ (A) is separable.

  • PDF

COMPOSITION OPERATORS ON 𝓠K-TYPE SPACES AND A NEW COMPACTNESS CRITERION FOR COMPOSITION OPERATORS ON 𝓠s SPACES

  • Rezaei, Shayesteh
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • For -2 < ${\alpha}$ < ${\infty}$ and 0 < p < ${\infty}$, the $\mathcal{Q}_K$-type space is the space of all analytic functions on the open unit disk ${\mathbb{D}}$ satisfying $$_{{\sup} \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^p(1-{{\mid}z{\mid}^2})^{\alpha}K(g(z,a))dA(z)<{\infty}$$, where $g(z,a)=log\frac{1}{{\mid}{\sigma}_a(z){\mid}}$ is the Green's function on ${\mathbb{D}}$ and K : [0, ${\infty}$) [0, ${\infty}$), is a right-continuous and non-decreasing function. For 0 < s < ${\infty}$, the space $\mathcal{Q}_s$ consists of all analytic functions on ${\mathbb{D}}$ for which $$_{sup \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^2(g(z,a))^sdA(z)<{\infty}$$. Boundedness and compactness of composition operators $C_{\varphi}$ acting on $\mathcal{Q}_K$-type spaces and $\mathcal{Q}_s$ spaces is characterized in terms of the norms of ${\varphi}^n$. Thus the author announces a solution to the problem raised by Wulan, Zheng and Zhou.

On Deferred f-statistical Convergence

  • Gupta, Sandeep;Bhardwaj, Vinod K.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.91-103
    • /
    • 2018
  • In this paper, we generalize the concept of deferred density to that of deferred f-density, where f is an unbounded modulus and introduce a new non-matrix convergence method, namely deferred f-statistical convergence or $S^f_{p,q}$-convergence. Apart from studying the $K{\ddot{o}}the$-Toeplitz duals of $S^f_{p,q}$, the space of deferred f-statistically convergent sequences, a decomposition theorem is also established. We also introduce a notion of strongly deferred $Ces{\grave{a}}ro$ summable sequences defined by modulus f and investigate the relationship between deferred f-statistical convergence and strongly deferred $Ces{\grave{a}}ro$ summable sequences defined by f.

ON THE PRIME SPECTRUM OF A RING (환의 PRIME SPECTRUM에 관하여)

  • Kim Eung Tai
    • The Mathematical Education
    • /
    • v.12 no.2
    • /
    • pp.5-12
    • /
    • 1974
  • 단위원을 가지는 하환환에 있어서의 Prime Spectrum에 관하여 다음 세가지 사실을 증명하였다. 1. X를 환 R의 prime spectrum, C(X)를 X에서 정의되는 실연적함수의 환, X를 C(X)의 maximal spectrum이라 하면 X는 C(X)의 prime spectrum의 부분공간으로서의 한 T-space로 된다. N을 환 R의 nilradical이라 하면, R/N이 regula 이면 X와 X는 위상동형이다. 2. f: R$\longrightarrow$R'을 ring homomorphism, P를 R의 한 Prime ideal, $R_{p}$, R'$_{p}$를 각각 S=R-P 및 f(S)에 관한 분수환(ring of fraction)이라 하고, k(P)를 local ring $R_{p}$의 residue' field라 할 때, R'의 prime spectrum의 부분공간인 $f^{*-1}$(P)는 k(P)(equation omitted)$_{R}$R'의 prime spectrum과 위상동형이다. 단 f*는 f*(Q)=$f^{-1}$(Q)로서 정의되는 함수 s*:Spec(R')$\longrightarrow$Spec(R)이다. 3. X를 환 S의 prime spectrum, N을 R의 nilradical이라 할 때, 다음 네가지 사실은 동치이다. (1) R/N 은 regular 이다. (2) X는 Zarski topology에 관하여 Hausdorff 공간이다. (3) X에서의 Zarski topology와 constructible topology와는 일치한다. (4) R의 임의의 원소 f에 대하여 f를 포함하지 않는 R의 prime ideal 전체의 집합 $X_{f}$는 Zarski topology에 관하여 개집합인 동시에 폐집합이다.폐집합이다....

  • PDF

A DOUBLE INTEGRAL CHARACTERIZATION OF A BERGMAN TYPE SPACE AND ITS MÖBIUS INVARIANT SUBSPACE

  • Yuan, Cheng;Zeng, Hong-Gang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1643-1653
    • /
    • 2019
  • This paper shows that if $1<p<{\infty}$, ${\alpha}{\geq}-n-2$, ${\alpha}>-1-{\frac{p}{2}}$ and f is holomorphic on the unit ball ${\mathbb{B}}_n$, then $${\int_{{\mathbb{B}}_n}}{\mid}Rf(z){\mid}^p(1-{\mid}z{\mid}^2)^{p+{\alpha}}dv_{\alpha}(z)<{\infty}$$ if and only if $${\int_{{\mathbb{B}}_n}}{\int_{{\mathbb{B}}_n}}{\frac{{\mid}f(z)-F({\omega}){\mid}^p}{{\mid}1-(z,{\omega}){\mid}^{n+1+s+t-{\alpha}}}}(1-{\mid}{\omega}{\mid}^2)^s(1-{\mid}z{\mid}^2)^tdv(z)dv({\omega})<{\infty}$$ where s, t > -1 with $min(s,t)>{\alpha}$.