• Title/Summary/Keyword: Exponential approximation

Search Result 104, Processing Time 0.023 seconds

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Algorithm for Computational Age Dating of Nuclear Material for Nuclear Forensic Purposes

  • Park, Jaechan;Song, Jungho;Ju, Minsu;Chung, Jinyoung;Jeon, Taehoon;Kang, Changwoo;Woo, Seung Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.171-183
    • /
    • 2022
  • The parent and daughter nuclides in a radioactive decay chain arrive at secular equilibrium once they have a large half-life difference. The characteristics of this equilibrium state can be used to estimate the production time of nuclear materials. In this study, a mathematical model and algorithm that can be applied to radio-chronometry using the radioactive equilibrium relationship were investigated, reviewed, and implemented. A Bateman equation that can analyze the decay of radioactive materials over time was used for the mathematical model. To obtain a differential-based solution of the Bateman equation, an algebraic numerical solution approach and two different matrix exponential functions (Moral and Levy) were implemented. The obtained result was compared with those of commonly used algorithms, such as the Chebyshev rational approximation method and WISE Uranium. The experimental analysis confirmed the similarity of the results. However, the Moral method led to an increasing calculation uncertainty once there was a branching decay, so this aspect must be improved. The time period corresponding to the production of nuclear materials or nuclear activity can be estimated using the proposed algorithm when uranium or its daughter nuclides are included in the target materials for nuclear forensics.

A spent nuclear fuel source term calculation code BESNA with a new modified predictor-corrector scheme

  • Duy Long Ta ;Ser Gi Hong ;Dae Sik Yook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4722-4730
    • /
    • 2022
  • This paper introduces a new point depletion-based source term calculation code named BESNA (Bateman Equation Solver for Nuclear Applications), which is aimed to estimate nuclide inventories and source terms from spent nuclear fuels. The BESNA code employs a new modified CE/CM (Constant Extrapolation - Constant Midpoint) predictor-corrector scheme in depletion calculations for improving computational efficiency. In this modified CE/CM scheme, the decay components leading to the large norm of the depletion matrix are excluded in the corrector, and hence the corrector calculation involves only the reaction components, which can be efficiently solved with the Talyor Expansion Method (TEM). The numerical test shows that the new scheme substantially reduces computing time without loss of accuracy in comparison with the conventional scheme using CRAM (Chebyshev Rational Approximation Method), especially when the substep calculations are applied. The depletion calculation and source term estimation capability of BESNA are verified and validated through several problems, where results from BESNA are compared with those calculated by other codes as well as measured data. The analysis results show the computational efficiency of the new modified scheme and the reliability of BESNA in both isotopic predictions and source term estimations.

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF

Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)

  • Hussein, A.;El-Tawil, M.;El-Tahan, W.;Mahmoud, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.129-152
    • /
    • 2008
  • This paper considers the solution of the stochastic differential equations (SDEs) with random operator and/or random excitation using the spectral SFEM. The random system parameters (involved in the operator) and the random excitations are modeled as second order stochastic processes defined only by their means and covariance functions. All random fields dealt with in this paper are continuous and do not have known explicit forms dependent on the spatial dimension. This fact makes the usage of the finite element (FE) analysis be difficult. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used to represent these processes to overcome this difficulty. Then, a spectral approximation for the stochastic response (solution) of the SDE is obtained based on the implementation of the concept of generalized inverse defined by the Neumann expansion. This leads to an explicit expression for the solution process as a multivariate polynomial functional of a set of uncorrelated random variables that enables us to compute the statistical moments of the solution vector. To check the validity of this method, two applications are introduced which are, randomly loaded simply supported reinforced concrete beam and reinforced concrete cantilever beam with random bending rigidity. Finally, a more general application, randomly loaded simply supported reinforced concrete beam with random bending rigidity, is presented to illustrate the method.

ON THE SUFFICIENT CONDITION FOR THE LINEARIZED APPROXIMATION OF THE B$\"{E}$NARD CONVECTION PROBLEM

  • Song, Jong-Chul;Jeon, Chang-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.125-135
    • /
    • 1992
  • In various viscus flow problems it has been the custom to replace the convective derivative by the ordinary partial derivative in problems for which the data are small. In this paper we consider the Benard Convection problem with small data and compare the solution of this problem (assumed to exist) with that of the linearized system resulting from dropping the nonlinear terms in the expression for the convective derivative. The objective of the present work is to derive an estimate for the error introduced in neglecting the convective inertia terms. In fact, we derive an explicit bound for the L$_{2}$ error. Indeed, if the initial data are O(.epsilon.) where .epsilon. << 1, and the Rayleigh number is sufficiently small, we show that this error is bounded by the product of a term of O(.epsilon.$^{2}$) times a decaying exponential in time. The results of the present paper then give a justification for linearizing the Benard Convection problem. We remark that although our results are derived for classical solutions, extensions to appropriately defined weak solutions are obvious. Throughout this paper we will make use of a comma to denote partial differentiation and adopt the summation convention of summing over repeated indices (in a term of an expression) from one to three. As reference to work of continuous dependence on modelling and initial data, we mention the papers of Payne and Sather [8], Ames [2] Adelson [1], Bennett [3], Payne et al. [9], and Song [11,12,13,14]. Also, a similar analysis of a micropolar fluid problem backward in time (an ill-posed problem) was given by Payne and Straughan [10] and Payne [7].

  • PDF

Hardware Design of Arccosine Function for Mobile Vector Graphics Processor (모바일 벡터 그래픽 프로세서용 역코사인 함수의 하드웨어 설계)

  • Choi, Byeong-Yoon;Lee, Jong-Hyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.727-736
    • /
    • 2009
  • In this paper, the $arccos(cos^{-1})$ arithmetic unit for mobile graphics accelerator is designed. The mobile vector graphics applications need tight area, execution time, power dissipation, and accuracy constraints compared to desktop PC applications. The designed processor adopts 2nd-order polynomial approximation scheme based on IEEE floating point data format to satisfy speed and accuracy conditions and reduces area via hardware sharing structure. The arccosine processor consists of 15,280 gates and its estimated operating frequency is about 125Mhz at operating condition of $0.35{\mu}m$ CMOS technology. Because the processor can execute arccosine function within 7 clock cycles, it has about 17 MOPS(million arccos operations per second) execution rate and can be applicable to mobile OpenVG processor. And because of its flexible architecture, it can be applicable to the various transcendental functions such as exponential, trigonometric and logarithmic functions via replacement of ROM and minor hardware modification.

The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source (램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화)

  • 송현정;나상신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.524-532
    • /
    • 2002
  • This paper reports that the Lambert W function applies to a non-iterative design of minimum mean square-error scalar quantizers for a Laplacian source. Specifically, it considers a non-iterative design algorithm for optimum quantizers for a Laplacian source; it finds that the solution of the recursive nonlinear equation in the non-iterative design is elegantly expressed in term of the principal branch of the Lambert W function in a closed form; and it proves that the non-iterative algorithm applies only to exponential or Laplacian sources. The contribution of the paper is in the reduction of the time needed for the design and the increased accuracy in resulting quantization points and thresholds, because the algorithm is non-iterative and the Lambert W function can be evaluated as accurately as desired. Also, numerical results show how optimal quantization distortion converges monotonically to the Panter-Dite constant and help derive an approximation formula for the key parameters of optimum quantizers.

Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling (전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the two-dimensional (2D) modeling of electrical method, the potential in the space domain is reconstructed with the calculated potentials in the wavenumber domain using inverse Fourier transform. The inverse Fourier integral is numerically evaluated using the transformed potential at different wavenumbers. In order to improve the precision of the integration, either the logarithmic or exponential approximation has been used depending on the size of wavenumber. Two numerical methods have been generally used to evaluate the integral; interval integration and Gaussian quadrature. However, both methods do not consider the distance from the current source. Thus the resulting potential in the space domain shows some error. Especially when the distance from the current source is very small or large, the error increases abruptly and the evaluated potential becomes extremely unstable. In this study, we developed a new method to calculate the integral accurately by introducing the distance from the current source to the rescaled Gauss abscissa and weight. The numerical tests for homogeneous half-space model show that the developed method can yield the error level lower than 0.4 percent over the various distances from the current source.