
1. Introduction

Much research has been performed continuously to fit a stress-range 

distribution and to predict fatigue damage for a Gaussian wide-band 

stress response. As a result, approximation models based on an 

empirical correction factor or numerical simulation have been 

proposed to solve wide-band spectrum issues. However, they still 

yield overestimated or underestimated fatigue damages when 

compared to time-domain rain-flow counting analysis.

The DNV rule (DNV, 2010) recommends cycle counting, an 

empirical model, and an analytic model for the Gaussian wide-band 

stress spectrum to carry out spectral fatigue analysis. The rain-flow 

counting method is mainly used for cycle counting. The Wirsching- 

Light correction method (Wirsching and Light, 1980), Dirlik model 

(Dirlik, 1985), and Single Moment method (Larsen and Lutes, 1991) 

were suggested as empirical models. The analytic model presents the 

Jiao-Moan model (Jiao and Moan, 1990) whichcan be applied to a 

narrow-band bi-modal distribution. Lloyd's rule (LR, 2018) 

recommends a multi-peak short-term spectral calculation method 

proposed by Park et al. (2014) and Dirlik (1985) in fatigue analysis for 

dynamic responses such as springing or whipping. 

A probability density function (PDF) for the Gaussian wide-band 

stress spectrum has not been defined theoretically. Instead, several 

efforts to develop an approximation formula that follows a numerical 

simulation-based rain-flow counting stress distribution have been 

carried out (Rychlik, 1987; Zhao and Baker, 1992). Larsen and Lutes 

(1991) developed The Single Moment model that is applicable to a 

wide-band spectrum. This model considers the generalized -order 

spectral moment using the slope  of the S-N curve. However, since it 

cannot reflect the interaction between low-frequency and high- 

frequency modes, the accuracy of fatigue damage is low.

Recently, a mathematical re-interpretation of a Single Moment 

model was attempted using a projection by projection (PbP) approach, 

which is called a nonlinear coupling rule (Benasciutti et al., 2013). 

This method discretizes a wide-band stress response spectrum into a 

myriad of small bands. Assuming that each small band is an 

independent narrow band for the frequency domain, it estimates 

cumulative fatigue damage using the spectral discretization method 

Journal of Ocean Engineering and Technology 35(4), 257-265, August, 2021
https://doi.org/10.26748/KSOE.2021.014

pISSN 1225-0767
eISSN 2287-6715

Original Research Article

Development of Empirical Formulas for Approximate Spectral Moment 
Based on Rain-Flow Counting Stress-Range Distribution

Seockhee Jun 1 and Jun-Bum Park 2

1Team Leader, Floating PV Team, Saemangeum Business Division, Hyundai Global Co., Ltd., Gunsan, Korea
2Professor, Division of Navigation Science, Korea Maritime and Ocean University, Busan, Korea

KEY WORDS: Approximate spectral moments, Rain-flow counting distribution, Step-by-step studies, Special parameters, Exponential 
bandwidth parameters

ABSTRACT: Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the 
Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide 
slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to 
develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a 
fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed 
and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined 
and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The 
new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments 
presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows 
that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Received 15 March 2021, revised 4 May 2021, accepted 6 July 2021

Corresponding author Jun-Bum Park: +82-51-410-4233, jbpark@kmou.ac.kr

ⓒ 2021, The Korean Society of Ocean Engineers
This is an open access article distributed under the terms of the creative commons attribution non-commercial license (http://creativecommons.org/licenses/by-nc/4.0) which permits 

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

257

http://orcid.org/0000-0001-6104-9973
http://orcid.org/0000-0003-1030-9338


258 Seockhee Jun and Jun-Bum Park

and Rayleigh PDF. Gao and Zheng (2019) derived a quadratic 

coupling method with three variables through numerical simulation 

and rain-flow counting to solve the inaccuracy of a bi-modal spectrum 

sincethe Single Moment model overlooks the interaction between 

low-frequency and high-frequency modes. Zheng et al. (2020) 

extended the bi-modal process to a tri-modal process based on a 

discrete spectral method and coupling coefficient equation.

Research results have recently shown that the accuracy of fatigue 

damage prediction for a numerical simulation-based approximate 

empirical model is relatively low. Research works for bi-modal or 

tri-modal spectra have been actively carried out for the development of 

a new method. For the Dirlik, Benasciutti, and Park models, associated 

research for numerical simulation-based approximations has been 

sluggish for a long time. For this reason, we attempted to develop 

empirical formulas by adopting new approximate spectral moments to 

improve the accuracy of prediction of the stress-range distribution and 

fatigue damages for a wide-band spectrum through analysis of other 

research, which can be easily applied to actual project engineering.

Fig. 1 shows an example of the rain-flow counting stress-range 

distribution for a Gaussian wide-band spectrum. As shown in the 

figure, the stress range is categorized into a low range, medium range, 

and high range. To enhance the accuracy of fatigue damage 

assessment, it is necessary to reflect the characteristics of the rain-flow 

counting distribution very well. First of all, it is necessary to determine 

the approximate spectral moment that is close to the simulation-based 

rain-flow counting moment. The new approximate spectral moment is 

highly important because it is considered as the input variable in the 

constitutive equation of the fatigue model. So far, no research has been 

published that defines the rain-flow counting moment as a theoretical 

solution. From the results of recent research, the rain-flow counting 

moment is defined as the spectral moment or bandwidth parameter, but 

it can be seen that there is a limit to increasing the accuracy of fatigue 

damage.

We developed an empirical formula for an approximate spectral 

Generation of response spectrum 
(Bimodal & Benasciutti type)

Data extraction of  stress time 
series using IFFT method

Rain-flow counting process
(stress range & number of cycle)

Calculation of Rain-flow counting  
spectral moments ( )

Step study: Various combination 
of bandwidth parameter and 

special parameter

Empirical formulas for 
approximate spectral moments

Fig. 2 Flowchart to develop empirical formulas for the approximate 

spectral moments

moment that is close to the rain-flow counting stress range (∆σ) 

distribution. This paper describes the detailed development process 

and calculation procedure of the step-by-step study and comparison of 

several candidate formulas. In addition, a special parameter or 

exponential special parameter and two exponential bandwidth 

parameters are introduced and are combined to develop approximate 

spectral moments. Fig. 2 shows the development flowchart of 

empirical formulas for the approximate spectral moments proposed in 

this study.

2. Data Processing

2.1 Generation of Response Spectrum

Data processing follows the same spectrum models and numerical 

calculation method as those specified by Park et al. (2014) as the 

Low range Medium range High range

Fig. 1 Stress-range categories in the rain-flow counting distribution
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Fig. 3 Bi-modal spectrum for response generation

resultant outputs should be compared under the same input data 

conditions. Two representative spectra are selected to implement the 

stress response generation. Fig. 3 shows an ideal bi-modal spectrum 

proposed by Lutes and Larsen (1990). This spectrum has two peaks 

with low and high frequencies. Assuming that each spectrum is 

distributed in a narrow band, the variance is made to be 1,000 and 500 

(Park et al., 2014). The spectrum area ratio Ar  and frequency ratio Fr  

are: 

 


 

   ,   


 

  (1)

Fig. 4 shows the five spectra proposed by Benasciutti (2004) (i.e., 

constant, linear, double symmetrical, and two kinds of anti-symmetric 

parabolic). Several assumptions are required to generate a stress 

response spectrum. The 0-order spectral moment (or variance) of all 

spectra is 1,000, and two bandwidth parameters   and   are within 

the range of 0.2–0.9 and 0.1–0.8, respectively (Park et al., 2014). The 

spectral bandwidth parameter   and the nth order spectral moment 

  are defined as follows.

 

 (2)

 ∫
∞ (3)

where ω = Wave frequency

ω = Response spectrum of stress amplitude 

Since the stress response spectrum is assumed to be a dimensionless 

quantity, the resulting stresses become a dimensionless quantity.

2.2 Data Extraction of Stress Time History

Time history data from the stress response is extracted using the 

Inverse fast Fourier transform (IFFT) method as follows: 

 ∑  
  ∆    (4)

where, ∆     ,  
    

where   is the response spectrum, ω  is the angular frequency,   

is the phase angle,  is time, and  is the number of frequencies. The 

angular frequency and phase angle are generated by a random number 

giving an equal distribution within the allowable range. In the process 

of extracting the time history of stress data, the stresses with the 

shortest period should be taken into account so as not to miss them. 

Therefore, it is important to select a reasonable and appropriate time 

increment in order to accurately capture the maximum and minimum 

of the stress during the IFFT process. 

Fig. 5 shows the numerical procedure for extracting time history 

data as described in Park et al., (2014). Through this process, it is 

possible to obtain random time history data with a sufficiently long 

Fig. 4 Benasciutti spectrum for response generation
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Fig. 5 Numerical simulation flowchart for time history data 

generation

period in the time domain. In the simulation, 10 blocks are repeatedly 

considered, and 20 sub-blocks are iteratively processed in one block. 

The duration period is 3 hours, and the phase angle and frequency 

interval are set randomly as the sub-block changes. 

2.3 Rain-Flow Counting Process

To calculate the stress range and number of cycles from the time 

history data, we considered the rain-flow counting process according 

to the standard procedure described in ASTM E1049-85 (ASME, 

2005). The PDF can be obtained by performing a rain-flow counting 

process for the stress range and number of cycles calculated from each 

block, as shown in Fig. 5. Finally, the PDF is obtained by taking the 

average of the PDF of 10 blocks. 

3. Step Study of Approximate Spectral Moment

3.1 Definition of Rain-Flow Counting Moment

To increase the accuracy of fatigue damage calculation, an 

approximate PDF with the same distribution as the rain-flow counting 

PDF must be obtained. For this purpose, it is preferable to obtain the 

rain-flow counting moment ( ) through numerical simulation 

and then to obtain an approximate spectral moment that is close to the 

rain-flow counting moment. For the response spectrum, the rain-flow 

counting moment is defined as follows (Dirlik, 1985):

 
∫
∞∆∆exp

∆ ∆
∫
∞∆ ∆∆

(5)

As can be seen from the equation above, the rain-flow counting 

moment is a non-dimensional value of the rain-flow counting PDF 

from a standard Rayleigh PDF. ExistingFatigue models define the 

rain-flow counting moment using spectral moments or bandwidth 

parameters (Dirlik, 1985; Park et al., 2014). From the results of recent 

studies, it can be seen that there is a limit to increasing the accuracy of 

fatigue damage. In this regard, it is necessary to develop new empirical 

formulas for approximate spectral moments. If approximate spectral 

moments can be accurately and efficiently obtained, a stress-range 

distribution close to the exact value can be obtained, and the accuracy 

of the fatigue damage prediction can be dramatically improved.

3.2 Existing Approximate Spectral Moment

Dirlik (1985) and Park et al. (2014) presented approximate spectral 

moments as a combination of bandwidth parameters through a 

parametric study based on numerical simulation. The first and 

second-order approximate spectral moments presented by Dirlik 

(1985) are as follows.


   (6)


  (7)

where,  

 ,  



The approximate spectral moment suggested by Park et al. (2014) is 

as follows.


  (8)


   (9)


    (10)

where  

 ,  



 

 ,  



Approximate spectral moments have been presented up to the 

third-order term, and no research has been published for fourth-order 

or higher terms. Increasing the order of the approximate spectral 

moment greatly contributes to the accuracy of the stress distribution in 

the high stress range where the Vanmarcke parameter (Vanmarcke, 

1972) is close to 1.0, and eventually, the accuracy of the fatigue 

damage estimation can be increased. Therefore, several step-by-step 

studies need to be carried out to develop approximate spectral 

moments that are close to the rain-flow counting moment. 

3.3 Step 1: Combination of Bandwidth Parameter

For the purpose of simply defining the approximate spectral moment 

so that it can be applied to the actual design, a combination with the 

constants  and  in the bandwidth parameter is assumed as follows.


  

 
 (11)
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To find the optimal values of  and  using the bandwidth parameter, 

the range of exponents is determined while excluding the range of low 

accuracy of the R-squared values through parametric studies:

b = 0.4 to 1.1, interval of 0.1 (12)

c = 0.7 to 1.1, interval of 0.1 (13)

Regression analysis is performed for 40 cases using  

obtained from numerical simulation. To show the difference between 

 and 
 , the R-squared values are calculated, 

and the result is shown in Fig. 6. The case where the R-squared values 

between two moments are close to 1.0 is case no. 38, and the 

corresponding exponent values are determined as 1.1 and 0.9, 

respectively. Therefore, 
  is determined as follows.


  

 
 (14)

From the R-squared values in Fig. 6, the accuracy of the remaining 

spectral moments except for both the first and fifth-order spectral 

moments is above 99%. As the constants  and  increase, the 

R-squared values of the first spectral moment gradually decrease. On 

the other hand, the R-squared values of the remaining spectral moment 

increase until  is 1.1 and  is 0.9. However, it decreases after that. As 

for the first-order spectral moment, it can be seen that the R-squared 

value is maximized when  is 0.4 and  is 0.9.

3.4 Step 2: Combination of Special Parameter

Since there is a limit to obtaining the moment equivalent to the 

 by combining only the bandwidth parameters, a special 

parameter was used (Jun and Park, 2020):

  

  (15)

where, m = spectral moment 

k = 0.01 to 2.5, 0.01 interval

The range of coefficient k is considered the same as the range of 

bandwidth parameter  . An iterative numerical calculation is 

performed in consideration of the following three conditions, and the 

R-squared values are confirmed through regression analysis between 

the special parameter and  using the rain-flow counting 

moment obtained from the numerical simulation. In this study, the 

moment 
 up to the fourth-order term is defined using a 

linear combination of special parameters as follows: 


   (16)


   (17)


    (18)


     (19)

Table 1 shows the R-squared distribution between 
 and 

. As shown in the table, excluding the fifth spectral 

moment, the accuracy of the remaining spectral moments is 99.7% or 

more. From this result, it is confirmed that the consideration of the 

special parameter is very appropriate to obtain the approximate 

spectral moment. However, as the order of the spectral moment is 

increased, the simple combination formula of the special parameter 

becomes complicated, so it is difficult to apply it to the actual design.

Table 1 R-squared values between 
 and 


 

 
 

 


1.0000 0.9997 0.9990 0.9970 0.9940

3.5 Step 3: Combination of a Special Parameter and Exponential 

Bandwidth Parameters

The approximate moment 
 is determined by combining 

a special parameter   and spectral moment 
  from Eq. (14) 

as follows. 

Fig. 6 R-squared value distribution between  and 
 
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
  

 
 (20)

Using  obtained from the numerical simulation, the 

R-squared values between  and 
 are calculated 

through regression analysis for 24 cases, and the results are shown in 

Fig. 7.

In the case of the 1st and 2nd-order spectral moment, the maximum 

R-squared values are shown when the coefficient  is 0.01. As the 

coefficient k increases, the R-squared values of the spectral moment 

decrease. This means that it is more advantageous not to consider the 

special parameter for the 1st and 2nd-order spectral moments. When the 

coefficient  is 0.6, the R-squared values of the remaining spectral 

moments show the maximum values and give more accurate results 

than the approximate spectral moment 
  of step 1. When  

is greater than 0.6, the R-squared values tend to decrease. From the 

results of step 3, the approximate spectral moments are summarized 

below:


 

 
  for  = 1 – 2 (21)


  

 
  for  = 3 – 5 (22)

3.6 Step 4: Combination of an Exponential Special Parameter 

and Exponential Bandwidth Parameters

The approximate moment 
 is determined by combining 

an exponential special parameter 
  and approximate spectral moment 


  of step 1 as follows.


 

 
 

 (23)

where,   



For the purpose of finding the optimal value of the exponent  of the 

special parameter, the final range below is determined while excluding 

Fig. 7 R-squared value distribution between  and 


Fig. 8 R-squared value distribution between  and 

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the range with low accuracy of the R-squared values through a 

parametric study:

 = -1.1 to 1.1, 0.1 interval (24)

Using the  obtained from the numerical simulation, the 

R-squared values that show the difference between  and 


 are calculated through regression analysis for 23 cases. 

The results are shown in Fig. 8 and are summarized below:


 

  
 

 (25)


 

  
 

 (26)


 

 
 

 (27)


 

 
 

 (28)


 

 
 

 (29)

From the R-squared values in Fig. 8, it can be found that the 

accuracy of the remaining spectral moments except for both the 

fourth-order and the fifth-order spectral moments is above 99.7%. As 

the exponent  increases, the R-squared values of the first spectral 

moment decrease. On the other hand, the R-squared values of the 

remaining spectral moment show a tendency of increasing as the 

exponent  increases and then decreasing as it passes a specific value. 

As for the spectral moments from the first-order to the fifth-order, it 

can be seen that the R-squared value is maximized when the exponent 

 is -1.0, -0.2, 0.4, and 0.7.

4. Comparison

4.1 Four Candidate Formulas

Based on the results obtained from the step-by-step study in the 

previous section, the rain-flow counting moment  and the 

Table 2 Four candidate formulas for approximate spectral moments

　 MRR(1) MRR(2) MRR(3) MRR(4)

Formula 
#1


  

 
 

  
 

  
 

  
 



Formula 
#2


  

 
 

  
 

  
 

  
 



Formula 
#3


  

 
 

 
 

  
 

  
 



Formula 
#4


  

 
 

 
 

  
 

  
 



highest equivalent approximate moment 
  are calculated. 

Several parametric studies were carried out using the best data fitting 

method and regression analysis. As a result, four final candidate 

empirical formulas were chosen, as illustrated in Table 2.

4.2 Comparison of Candidate Formulas

The rain-flow counting response distribution calculated from the 

numerical simulation is regarded as the real value. Several comparison 

studies were carried out using four empirical equations. Table 3 shows 

the comparison results of R-squared values between the rain-flow 

counting moment and approximate spectral moment using four 

formulas. Fig. 9 shows a comparison of the PDF between empirical 

formula #2 and the rain-flow counting spectral moment for two 

representative spectra mentioned in section 2.1.

Fig. 10 shows the comparison of the relative distance from rain-flow 

counting distribution of four formulas compared with two models 

(Dirlik model and Park model) to confirm the suitability and accuracy. 

Table 3 Comparison of R-squared values using four formulas

Candidate 
Formula

MRR(1) MRR(2) MRR(3) MRR(4)

Formula #1 0.9995 0.9997 0.9984 0.9967

Formula #2 0.9992 0.9995 0.9988 0.9966

Formula #3 0.9996 0.9997 0.9988 0.9966

Formula #4 0.9993 0.9995 0.9988 0.9966
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Fig. 9 Comparison of PDF between empirical formula #2 and rain-flow counting moment. 
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To evaluate the error rates for relative distance, the root mean square 

(RMS) method was used as shown in Eq. (30).

RMS average = 




∑ (30)

where,   = Relative distance error of ith spectrum

 = Total number of spectra

Table 4 shows a quantitative comparison of distance between the two 

models and four formulas using the RMS method. As a result, it was 

confirmed that formula #2 gives the closest distribution to the 

rain-flow counting distribution.

Table 5 summarizes the comparison results based on the PDF 

distribution and relative distance error rate between the rain-flow 

Table 4 Comparison of RMS values for relative distance error 

between existing models and four formulas

　
Dirlik 
model

Park 
model

Formula 
#1

Formula 
#2

Formula 
#3

Formula 
#4

RMS 
value

16.92 12.01 12.88 11.60 12.61 16.01

Table 5 Comparison of four formulas using eight spectra

Spectrum　 Formula #1 Formula #2 Formula #3 Formula #4

Type1-02-01 Good Good Good Good

Type1-05-01 Good Good Good Good

Type1-06-05 Bad Better Bad Good

Type1-07-06 Good Better Good Good

Type1-09-05 Good Good Good Good

Type1-09-08 Good Good Good Good

Type2-04-03 Bad Good Bad Good

Type5-09-08 Good Good Good Good

counting distribution and four formulas using eight spectra. By 

extending to the fourth-order spectral moment that the other model did 

not consider, the contribution to the rain-flow counting (RFC) 

distribution in the high range is large, and the fatigue damage accuracy 

can be improved. The approximate spectral moments obtained from 

this study can be applied as significant input variables in the 

constitutive equation of the fatigue model. 

5. Conclusions

From the results of previous studies, when increasing the order of 

the spectral moment, the PDF distribution in the Gaussian wide-band 

range close to a Vanmarcke parameter of 1.0 approaches the rain-flow 

counting distribution, so the accuracy of the fatigue damage 

assessment can be improved. In this study, we developed a new 

approximate spectral moment 
  that is close to the 

rain-flow counting distribution by combining special parameters, 

exponential special parameters, and exponential bandwidth parameters 

through step-by-step studies using regression analysis. In addition, this 

paper deals with the full explanation on the basis of study, i.e. detailed 

development process and calculation procedure of the step-by-step 

study and comparison study of several candidate formulas, of the 

approximate spectral moment. Using two representative spectrums 

such as Benasciutti spectrum and bi-modal spectrum, preliminary data 

processes, i.e. response spectrum generation, time history data 

extraction and rain-flow counting execution, were performed to make 

necessary input data for the development of new approximate spectral 

moments. The main characteristics of this study that differentiate it 

from other studies are as follows.

(1) Whereas other studies considered only the 2nd or 3rd-order 

approximate spectral moments, this study contributed to increasing the 

accuracy of fatigue damage assessment by extending them to 4th–order 

terms or higher.

Fig. 10 Comparison of distance from RFC distribution of four formulas compared and two other models
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(2) The previous models considered the approximate spectral 

moment with the spectral moment  –   or the linear combination 

of the bandwidth parameters   and  . In this study, a special 

parameter or exponential special parameter was combined with the 

bandwidth parameter through a step-by-step study to develop several 

empirical formulas. 

(3) In addition, simplicity and convenience were considered for an 

actual engineering application, and stability and accuracy of the 

fatigue analysis solution can be enhanced by applying approximate 

spectral moments with the R-squared values of more than 97% 

comparing with rain-flow counting moments. 
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