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ON THE SUFFICIENT CONDITION FOR
THE LINEARIZED APPROXIMATION OF
THE BENARD CONVECTION PROBLEM

JoNG CHUL SoNG AND CHANG HO JEON

1. Introduction

In various viscous flow problems it has been the custom to replace
the convective derivative by the ordinary partial derivative in problems
for which the data are small. In this paper we consider the Bénard
Convection problem with small data and compare the solution of this
problem (assumed to exist) with that of the linearized system resulting
from dropping the nonlinear terms in the expression for the convective
derivative. The objective of the present work is to derive an estimate
for the error introduced in neglecting the convective inertia terms. In
fact, we derive an explicit bound for the L, error. Indeed, if the initial
data are O(c) where ¢ < 1, and the Rayleigh number is sufficiently
small, we show that this error is bounded by the product of a term of
O(£?) times a decaying exponential in time. The results of the present
paper then give a justification for linearizing the Benard Convection
problem. We remark that although our results are derived for classical
solutions, extensions to appropriately defined weak solutions are obvi-
ous. Throughout this paper we will make use of a comma to denote
partial differentiation and adopt the summation ccnvention of summing
over repeated indices (in a term of an expression) from one to three.

As reference to work on continuous dependence on modelling and
initial data, we mention the papers of Payne and Sather [8], Ames [2]
Adelson [1], Bennett [3], Payne et al. [9], and Song [11, 12, 13, 14]. Also,

a similar analysis of a micropolar fluid problem backward in time (an

Received April 11, 1991.
Research partially supported by a Non Directed Research Fund of the Korea
Research Foundation, granted in 1989.



Jong Chul Song and Chang Ho Jeon

ill-posed problem) was given by Payne and Straughan [10] and Payne

7).

2. The Bénard Convection Problem

Let Q2 denote the spatial region between the planes z = 0 and z = 1.
The equations of the problem we are interested in are (see Galdi and
Straughan [5] and Song [14]).

uj; =0

(2.1) Uje + Ujuij = —p; + RO6:3 + Au;,
0:+u;0; = Rus + A,

in {2 x (0, 00). Here ui(z = 1,2, 3), 6, and p are the velocity, temperature,
and presure, R is the Rayleigh number, §;; is the Kronecker-delta and
A is three-dimensional Laplace operator. We look for solution (u;, #)
which is periodic in z and y with a period cell D and which satisfies

ui=0=0o0n z=0,1,
as well as the initial conditions

ui(z,0) = efi(z), z € D,
8(z,0) = eg(a), z € D.

For convenience in our analysis we have taken the Prandtl number to
be 1.

Assuming that the constant ¢ is small we may expect, for smooth
enough f; and ¢, that a unique global solution will exist and that this
solution (u;,#) may be well approximated by (ev;,cé) where

vj; =0,
(2.2) Vit = — g + Redis + Doy,
¢+ = Rvs + D¢,
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in D x (0,00). Here ¢ is an unknown scalar. The boundary conditions
for (v, &) being v;, $ =0 on z = 0,1, and the initial conditions are

vi(z,0) = fi(z), = € D,
¢(z,0)=g(z), ¢ € D.

The goal of this paper is to derive a bound for F(t) where
(2.3) F(t) = / {(ui — evi)(v; — eu;) + (6 — £¢)?} dx.
D
To this end we now set

Ww; = u; —Evy, Y =80 — ¢,

and observe that

dF
E‘ = QL(U7iU7i,t + ¢’¢,1) dx
=2 / w,—(Aw,' ~Pit+eéEq: + Ripéyz — Ujui,j) dx
JD
(2.4) +2/FMAw+Rwy~wQﬂdI
D

= =2 | w;jw;;dr—2 | ;¢ ,;dr+ 4R | wspdr
‘] l] 7] ‘]
D D D

-2 / wivju; jdr —2 [ pu,;é jdx
JD D

= -2 + I) + Ny + Ny + Ns.

|
H

Here we have carried out the obvious integration by parts, made use
of the differential equations as well as the boundary and periodicity
conditions. The obvious definitions of I, I, N1, N, and N3 are made.
In order to derive a differential inequality for F' we now need to bound
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Ni, Ny, and N3. We first observe for N; that

N, < R(4/ w§dm+/ z/)zdx)
D D
< 4 2 1 2
<R ';E Dw3,3 dm+? Dl/),a dr

< —62- (/ w3 32dzx —2/ W3 3Wq,od +/ Wy o dz
™ D D D
+ zp,,-z/),jdx)
D
R

|

< P (/ w3,32d.r - 2/ W3,aWq, 3dT +/ W, pWh AT
(25) D D D
+/ 1/),:'1/1,;‘d$>
D
R 2
< 2 w33 dz + w3,aw3,ad$ + wa,3wa‘3dl‘
T D D 1o
+/ wa,bwa,bdz+/ ¢,,-¢»,,-dx)
D D
R
=3 wijwijde + | ;v dx
D D

R
= — (I + 1),

2

where we have summed over repeated indices (a and b) from one to two.
In deriving the inequality (2.5) we have used the arithmetic-geometric
mean inequality, the one dimensional Poincaré inequality (see Hardy et
al. [6]), the Cauchy-Schwarz inequality, and the fact that w; is diver-
gence free at step three. Turning to N, and N3, we rewrite Ny and N,

as
(2.6) Ny = —25/ wi(w; — evj)vi jdz.
D
N; = —26/ 1/)(10, - ev,-)qb,jda:.
D
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Using the Cauchy-Schwarz inequality, we then find

Ny + N3 = —2¢ (/ wiw;v; jdz +/ wj‘/”ﬁ,jd‘”)
D D

(2.7)
— 2¢? (/ wiv;v; jdz +/ ¢vj¢,jd:1?)
D D
1/2 1/2
<2 li{/ (w;wi)zdx} Jll/2 + (/ wzijjd:c) J;ﬂ]
D D
1/2 1/2
+ 262{(/ w,-w,-vjvjdz> Jll/2 + (/ z/)zvjvjdx) J;/z},
D o

where we have defined

J1 :/ v;,j0; 5dx, J2=/ ¢.;9.idx.
D D

In order to complete the bounds for N; and N3, we define the Sobolev
constant which was extensively used in Galdi et al. [4] and Song [14].

(2.8) w = ir}llf-l——————-—

where ||.|| denotes the Ly(D) norm and H is the set of all Dirichlet inte-
grable functions on D which vanish on z = 0,1. This Sobolev constant
w 1is critical to the analysis of the stability, so we use a sharper Sobolev
constant w (than that derived in Galdi et al. [4]), which was computed
in Song [14]. Then we may deduce that

Na + N3 < 2e(wl? + wh L) 2 (Jy + J3)/?

1/4 1/4
+262{/D(v]'v]')2dx} {{/I)(UJiw,-)zdx} J]1/2
1/4
(2.9) +</Dd)4dx> J;/z]
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< 20" 20T + L)V + Jp)HE

+ 262 2 (I 4 L)V IR+ J)V?
< 2ew (I 4+ L)(Jy + Jp)/?

+ 2820V + L)YA(Jy + Ja).

Here we have used the following inequality
(2.10) ab + cd < (a® + V2B + d*)/?, for a,b,c,d > 0,

The Sobolev inequality defined in (2.8), and the Cauchy-Schwarz in-
equality. Using the arithmetic-geometric mean inequality, we can re-
write (2.9) for arbitrary positive 3 (to be determined later) as

(2.11) Ny 4 N3 <201y + L)(Jy + Jo)'/?
+ (I + L) + 'w/B(Jy + Jo)*.
Inserting (2.5) and (2.11) back into (2.4), we end up with

(2.12)
dF/dt < —2[1 — R/27% — ew V2 {1 (t) + Jo(1)}/2 = 8/2H{Li(#) + L(t)}

+etw/B{N () + J2()}

Finally we proceed to estimate Jq(t) and J2(#) in terms of the prescribed
initial data.

3. Estimation for Ji(¢) and J(¢)

In this section we obtain an estimation for J1(t) and Ja(t) by first
deriving a differential inequality. To this end we form

. d d
(3.1) —={L(t)+ J2(1)} = —2/ (vievie + ¢,t2)da: + 2R—/ ¢vzdz,
(“' D dt D

where we have employed the obvious integration by parts, the differen-
tial equations, and the boundary conditions. Integrating by dropping
a negative term, we see that

(32) Jl(f) -+ Jz(f) S 2R/ ¢Ugd$ + Q(),
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where
C%:LM+AW%QRLwa
= [ (Fusfis + 9,004z — 2R | o,

which is the initial data. Using the Cauchy-Schwarz inequality, the
Poincaré inequality, and the fact that

1

2

v3®dr < —¢ Vi U dT
/D ’ - 471'2/ 1,3Vi,;04,

as a result of (2.5), we now further rewrite (3.2) as

1/2
Ji(t) + J2(t) < Qo + 2R (/ ¢2dz/ 1)324111:)
D D

B 1/2
(3.3) S Qo+ — (/ ¢i,j¢i,jdx/ vi,jvi,jdx)
T D D

< Qo+ 2%[./](1‘) + Jo(t)],
Then, we must restrict the Rayleigh number so that
R< 212,
and we have
(3.5) Ti(t)+ Jo(t) < Qo/(1 — R/2x?).

This inequality is valid for all time provided the prescribed initial data
term (Qo) is bounded. Thus going back to (2.12), we can replace J; (t)+
Jo(t) by Qo/(1 — R/27?) and provided

(3.6) 1— R/27% — ew'2QN? /(1 — R/222)1/2 > @,
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we may choose
(3.7) §=1-Rj2n* - aw'?Qy* /(1 - R/2x*)' /2.

Then the inequality (2.12) can be rewritten as

i{Fex (7?Bt)} < gw(_ Qo 2ex (?Bt)
dt P =73 \1-Rrj2e?) P ‘
An integration yields

54(4) Q02

(3.8) F(t) < T3 (1 = R/3x2)? {1 — exp(—725t)}.

This gives the desired bound for F, namely

(3.9) F(t) < Ke*{1 — exp(—n*Bt)},

where K is a computable constant which depends on J;(0) + J2(0),w,
and R but not on . Thus the order of approximation we would expect
from a purely formal manipulation is shown to be correct.

On the other hand, when R < 2#? for very large t, we can actually
obtain a sharper bound for F(t) by exploiting the crude fact that

(3.10) / (wiw; + *)dz < 2/ (uiu; + 6%)dx + 262/ (vivi + ¢*)dz.
D D D
Thus using the similar arguments used before, we first see that
d 2
— | (wu; +0%)dr = =2 [ (u;jui;+0;0;)de+4R | Ouzdrx
dt Jp p o D

< -—2/ (ui,juiyj +9’j0,j)d$
D

R
+5 /D(Ui,jw,j + 6,6 ;)dx

IN

-2(1 - R/27r2)7r2/ (uiw; + 6% )dz,
D
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where the last step is valid if R < 272. An integration leads to

(3.11) /D(u,'u,- + 6*)dz < &* /D(f,f, + ¢%)dz exp{—(27% — R)t}.

In a similar way we estimate
(3.12) / (vivi + ¢%)dx < / (fifi + ¢*)dz exp{—(27% — R)t}.
D D
Inserting (3.11) and (3.12) back into (3.10) yields
2/ (uiu; + 6°)dz + 252/ (vivi + ¢%)dz
D D
< 4¢? / (fifi + ¢*)dz exp{—(27% — R)t}.
D

It follows then that this crude proc.edure yields, for a computable K,
a bound of the form

(3.13) F(t) < Kie? exp{—(2n% — R)},

which is of course ultraconservative for small t. Nevertheless, when
B < 27% — R, the bound (3.13) will actually be sharper than (3.9)
for sufficiently large ¢.

4. Conclusions

In this paper we have shown that, if the Rayleigh number hypothesis
(3.6) is satisfied (This restriction on R is equivalent to the weaker condi-
tion R < 27%, since ¢ < 1), we may effectively approximate the solution
(ui,8) of the Bénard Convection problem by the solution (ev;, e¢) of the
analogous linear problem. The L, error in this approximation is seen
to be of the order one would expect from a purely formal manipulation.

If R > 2n% and ¢ is sufficiently small, it is still possible to compare
(ui, ) to (cvi,e¢) (assuming these solutions exist).

However, in this case one would obtain an estimate of the form

F(t) < Kae' {exp(vt) — exp(m1t)}, ¥ > 7,
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for computable positive constants K2,«, and ;. This is clear if we use
instead of the bound (2.5) for N,

N, <2RF.

Then a suitable choice for # would lead ( for a computable K3) to an
inequality of the form

dF
7&7‘ <~F+ I{:;e’-:4 exp('y]t),

which integrates to give the indicated bound.
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