DOI QR코드

DOI QR Code

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Received : 2018.02.22
  • Accepted : 2018.06.03
  • Published : 2018.10.25

Abstract

For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

Keywords

References

  1. D.I. Poston, H.R. Trellue, Users Manual, Version 1.00 for MONTEBURNS, Version 3.01, LA-UR-98-2718, Los Alamos National Laboratory, 1998.
  2. K. Okumura, T. Mori, M. Nakagawa, K. Kaneko, Validation of a continuous-energy Monte Carlo burn-up code MVP-BURN and its application to analysis of post irradiation experiment, J. Nucl. Sci. Technol. 37 (2) (2000) 128. https://doi.org/10.1080/18811248.2000.9714876
  3. R. Reyes-Ramirez, et al., Comparison of MCNPX-C90 and TRIPOLI-4-d for fuel depletion calculations of a gas-cooled fast reactor, Ann. Nucl. Energy 37 (8) (2010) 1101. https://doi.org/10.1016/j.anucene.2010.04.002
  4. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Tech. 44 (2) (2012) 161. https://doi.org/10.5516/NET.01.2012.503
  5. J. Leppanen, Serpent-a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, VTT Technical Research Centre of Finland, 2013.
  6. D.B. Pelowitz (Ed.), $MCNP6^{TM}$ User's Manual Version 1.0," Rev. 0, LA-CP-13-00634, Los Alamos National Laboratory, 2013.
  7. R.J. Stamm'ler, HELIOS Methods, Studsvik Scandpower, 1998.
  8. A. Isotalo, V. Sahlberg, Comparison of neutronics-depletion coupling schemes for burnup calculations, Nucl. Sci. Eng. 179 (2015) 434. https://doi.org/10.13182/NSE14-35
  9. D. Lee, J. Rhodes, K. Smith, Quadratic depletion method for gadolinium isotopes in CASMO-5, Nucl. Sci. Eng. 174 (2013) 79. https://doi.org/10.13182/NSE12-20
  10. J.Y. Cho, et al., Development of Gadolinium Quadratic Depletion Module for DeCART," KAERI/TR-4738/2012, Korea Atomic Energy Research Institute, 2012.
  11. A. Isotalo, P.A. Aarnio, Higher order methods for burnup calculations with bateman solutions, Ann. Nucl. Eng. 38 (2011) 1987. https://doi.org/10.1016/j.anucene.2011.04.022
  12. H.J. Shim, C.H. Kim, W.S. Park, H.K. Joo, Monte Carlo depletion analysis of a PWR with the MCNAP, in: Proc. Int. Conf. On Mathematics and Computation, vol. 99, M&C, Madrid, Spain, 1999.
  13. A.G. Croff, ORIGEN2: a versatile computer code for calculating the nuclide compositions and characteristics of nuclear materials, Nucl. Technol. 62 (1983) 335. https://doi.org/10.13182/NT83-1
  14. Jordan Research & Training Reactor Final Safety Analysis Report, Jordan Atomic Energy Commission, 2014.
  15. K.H. Lee, J.S. Song, H. Chae, Depletion and decay analyses of a KJRR fission moly target, in: Trans. Korea Nucl. Soc. Spring Meeting, Gwangju, Korea, May 30-31, 2013.
  16. M. Pusa, J. Leppanen, Computing the matrix exponential in burnup calculations, Nucl. Sci. Eng. 164 (2010) 140. https://doi.org/10.13182/NSE09-14
  17. K.S. Kim, "Specifications for the VERA Depletion Benchmark Suite," CASL-U-2015-PHI.VCS.P11.02-010, Oak Ridge National Laboratory, 2015.
  18. H.J. Park, H.J. Shim, C.H. Kim, Uncertainty propagation in Monte Carlo depletion analysis, Nucl. Sci. Eng. 167 (2011) 196. https://doi.org/10.13182/NSE09-106
  19. H. Rief, Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order taylor series approach, Ann. Nucl. Energy 11 (1984) 455. https://doi.org/10.1016/0306-4549(84)90064-1
  20. Y. Nagaya, T. Mori, Impact of perturbed fission source on the effective multiplication factor in Monte Carlo perturbation calculations, J. Nucl. Sci. Technol. 42 (5) (2005) 428. https://doi.org/10.1080/18811248.2005.9726411

Cited by

  1. On using computational versus data-driven methods for uncertainty propagation of isotopic uncertainties vol.52, pp.6, 2018, https://doi.org/10.1016/j.net.2019.11.029
  2. Simulating IRIS assembly containing erbium oxide as a burnable poison vol.24, pp.None, 2018, https://doi.org/10.1016/j.mtcomm.2020.101218
  3. Validation of nuclide depletion capabilities in Monte Carlo code MCS vol.52, pp.9, 2018, https://doi.org/10.1016/j.net.2020.02.017
  4. RAST-K v2-Three-Dimensional Nodal Diffusion Code for Pressurized Water Reactor Core Analysis vol.13, pp.23, 2020, https://doi.org/10.3390/en13236324