• Title/Summary/Keyword: Existence and uniqueness

Search Result 385, Processing Time 0.032 seconds

THE CAUCHY PROBLEM FOR A DENGERATE PARABOLIC EQUATION WITH ABSORPTION

  • Lee, Jin-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.303-316
    • /
    • 2000
  • The Cauchy problem for degenerate parabolic equations with absorption is studied. We prove the existence of a fundamental solution. Also a Harnack type inequality is established and the existence and uniqueness of initial trace for nonnegative solutions is shown.

  • PDF

VALUE SHARING AND UNIQUENESS FOR THE POWER OF P-ADIC MEROMORPHIC FUNCTIONS

  • MENG, CHAO;LIU, GANG;ZHAO, LIANG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.39-50
    • /
    • 2018
  • In this paper, we deal with the uniqueness problem for the power of p-adic meromorphic functions. The results obtained in this paper are the p-adic analogues and supplements of the theorems given by Yang and Zhang [Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76(2008), 140-150], Chen, Chen and Li [Uniqueness of difference operators of meromorphic functions, J. Ineq. Appl. 2012(2012), Art 48], Zhang [Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367(2010), 401-408].

OPTIMAL CONTROL OF THE VISCOUS WEAKLY DISPERSIVE BENJAMIN-BONA-MAHONY EQUATION

  • ZHANG, LEI;LIU, BIN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1185-1199
    • /
    • 2015
  • This paper is concerned with the optimal control problem for the viscous weakly dispersive Benjamin-Bona-Mahony (BBM) equation. We prove the existence and uniqueness of weak solution to the equation. The optimal control problem for the viscous weakly dispersive BBM equation is introduced, and then the existence of optimal control to the problem is proved.

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.