
Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 43–54
http://dx.doi.org/10.4134/BKMS.2014.51.1.043

EXISTENCE OF SOLUTIONS FOR NONLINEAR

EVOLUTION EQUATIONS WITH INFINITE DELAY

Qixiang Dong and Gang Li

Abstract. This paper is concerned with nonlinear evolution differential
equations with infinite delay in Banach spaces. Using Kato’s approximat-
ing approach, existence and uniqueness of strong solutions are obtained.

1. Introduction

Let X be a Banach real space with norm ‖ · ‖. Consider the nonlinear
abstract problem with infinite delay

{

u′(t) +A(t)u(t) = F (t, ut), t ∈ [0, T ]
u0 = φ,

(1.1)

where u : (−∞, T ) → X ; for each t ∈ [0, T ], A(t) : D(A(t)) ⊂ X → X ; φ is
an element in a phase space (state space) B of functions mapping (−∞, 0] into
X . F : [0, T ]× B → X , and ut ∈ B defined by ut(θ) = u(t + θ) for θ ≤ 0. By
a strong solution of (1.1), we mean a continuous function u : (−∞, T ] → X ,
which is absolutely continuous on [0, T ], strongly differentiable for almost all
t ∈ [0, T ], and satisfies (1.1). We also say that u is a solution of (1.1) on [0, T ].

In the literature devoted to equations with finite delay, the state space is
the space of all continuous functions on [−r, 0], r > 0, endowed with the uni-
form norm topology. When the delay is unbounded, the selection of the state
space B plays an important role in the study of both qualitative and quantita-
tive theory. A usual choice is a semi-normed space satisfying suitable axioms,
which was introduced by Hale and Kato [7]. For a detailed discussion on the
topic, we refer to the book by Hino et al. [9]. In the last decades, the theory
of functional differential equations of various classes with delay has attracted
widespread attention. The development was initiated for equations with finite
delay by Travis and Webb [15, 16], and Webb [17, 18]. For later development,
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we mention here the work of some authors [2, 3] and [5]. As to the case of infi-
nite delay, an extensive theory is developed for (1.1), where A(t) (or A(t) ≡ A)
is linear. For nonlinear case, we refer the readers to [6, 12, 14] and [4].

Concerning the case that A(t) are nonlinear, Kartsatos and Parrott [10]
showed the existence of strong solution of (1.1) with finite delay. By using
Kato’s approximating approach, they showed in a straightforward manner that,
under certain assumptions on X , F and A(t), u(t), the unique strong solution
of (1.1), actually exists as a uniform limit of {un(t)}, where un(t), n = 1, 2, . . .
are the unique strongly continuously differentiable solutions of approximating
equations

{

u′
n
(t) +An(t)un(t) = F (t, unt

), t ∈ [0, T ]
un0

= φ,
(1.2)

here An(t) are the Yosida approximants.
In this paper, we extend this line of attack to evolution equations with

infinite delay. We adopt the phase space introduced by Hale and Kato [7].
By applying the method cited above, we obtain an existence and uniqueness
theorem of equation (1.1) with infinite delay. Our result extends and improves
those of Kartsatos et al. [10] and Dyson and Bressan [2, 3].

2. Preliminaries

In what follows, let X be a real Banach space with X∗, the dual space of
X , being uniformly convex. We also assume that A(t) : D(A(t)) ⊂ X → X,
t ∈ [0, T ], are m-accretive. We impose the following conditions:

(D1) The domain of D(A(t)) ≡ D is independent of t.
(D2) There is a nondecreasing function L : [0,+∞) → [0,+∞) such that for

all x ∈ D and s, t ∈ [0, T ],

‖A(t)x −A(s)x‖ ≤ |t− s|L(‖x‖)(1 + ‖A(s)x‖).

(D3) There exists a constant B > 0, such that

‖F (t, ξ)− F (t, ζ)‖ ≤ B‖ξ − ζ‖B, ξ, ζ ∈ B, t ∈ [0, T ].

(D4) There exists an increasing function g : [0,+∞) → [0,+∞) such that

‖F (t, ξ)− F (s, ξ)‖ ≤ |t− s|g(‖ξ‖B), ξ ∈ B, t, s ∈ [0, T ].

We recall the definition of a single-valued operator A : D(A) ⊂ X → X
being m-accretive. Let 〈x, y〉 denote the evaluation y(x) for x ∈ X, y ∈ X∗.
Define

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.

The set J(x) is nonempty for each x ∈ X by the Hahn Banach theorem. The
mapping J is called the duality map of X . For a general Banach spaceX , the
duality map may be multi-valued. However, if X∗ is strictly convex, then the
duality map J is single-valued. If, moreover, X∗ is uniformly convex, then J is
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uniformly continuous on bounded subset of X . An operator A : D(A) ⊂ X →
X is called accretive if for every x1, x2 ∈ D(A), we have

〈Ax1 −Ax2, x1 − x2〉 ≥ 0.

An accretive operator A is said to be m-accretive if R(I − λA) = X for some
λ > 0. If A is m-accretive, then R(I + λA) = X for all λ > 0 .

Since for each t ∈ [0, T ], A(t) is m-accretive, we can define Yosida approxi-
mates for n = 1, 2, . . . as follows:

Jn(t) = (I + (1/n)A(t))−1,(2.1)

An(t) = n(I − Jn)(t).(2.2)

If Condition (C2) is satisfied, then the Yosida approximates are everywhere
defined, and

An(t) = A(t)Jn(t) = A(t)(I + (1/n)A(t))−1.

For the other properties, see, for example, Barbu [1] and Pavel [13].

Definition 2.1. A linear topological space of functions from (−∞, 0] into X ,
with seminorm ‖ · ‖B, is called an admissible phase space if B has the following
properties:

(A1) There exist a positive constantH and functions K(·),M(·) : [0,+∞) →
[0,+∞), with K continuous and M locally bounded, such that for any a, b ∈ R

and b > a, if x : (−∞, b] → X, xa ∈ B, and x(·) is continuous on [a, b], then for
every t ∈ [a, b], the following conditions hold:

(i) xt ∈ B;
(ii) ‖x(t)‖ ≤ H‖xt‖B for some H > 0;
(iii) ‖xt‖B ≤ K(t− a) supa≤s≤t ‖x(s)‖ +M(t− a)‖xa‖B.
(A2) For the function x(·) in (A1), t 7→ xt is a B valued continuous function

for t ∈ [a, b].
(B) The space B is complete.

Notice that property (B) is equivalent to say that the space of equivalence
classes B/‖ · ‖B is a Banach space.

In the theory of retarded functional differential equations with infinite delay
we frequently need some additional properties on the space B to obtain some
results. Next we denote by C00 the space of continuous functions from (−∞, 0]
into X with compact support. It is clear from the axioms of phase space that
C00 ⊂ B. We consider the following axioms [9]:

(E1) If {ξn} is a Cauchy sequence in B which converges to a function ξ
uniformly on compact subsets of (−∞, 0], then ξ ∈ B and ‖ξn − ξ‖B → 0 as
n→ ∞.

(E2) If a uniformly bounded sequence {ξn} in C00 converges to a function
ξ in the compact-open topology then ξ belongs to B and ‖ξn − ξ‖B → 0 as
n→ ∞.

The following property is useful for the existence of strong solution of non-
linear evolution equation.
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Lemma 2.2 ([8]). Assume that B satisfies axiom (E2). Let u : (−∞, a) → X,

a > 0, be a function of class C1 such that u0 = ξ is bounded and continuous

on (−∞, 0] and ξ′ is bounded and uniformly continuous. Then the function

[0, a) → B, t 7→ ut is differentiable and dut/dt = u′t for t < a.

We also need the following Gronwall’s inequality.

Lemma 2.3 (Gronwall’s inequality). Let y(·), α(·), β(·) be positive functions

defined on [a, b], satisfying

y(t) ≤ α(t) +

∫ t

a

β(s)y(s)ds

for all t ∈ [a, b], then

(2.3) y(t) ≤ α(t) exp(

∫

t

a

β(s)ds)

for all t ∈ [a, b]. In particular, if α(t) = α = constant > 0, then

y(t) ≤ α exp(

∫ t

a

β(s)ds)

for all t ∈ [a, b]. If in addition that β(t) = β = constant, then

y(t) ≤ α exp(β|t− a|)

for all t ∈ [a, b].

3. The existence of strong solutions

Now we state and prove our main result.

Theorem 3.1. Assume that Conditions (D1)–(D4) hold, φ ∈ B is bounded

and continuously differentiable such that φ(0) ∈ D. Then there exists a unique

strong solution of (1.1) on [0, T ] given by limn→∞ un(t), where, for each n,
n = 1, 2, . . ., un(·) is the unique continuously differentiable solution of (1.2) on
[0, T ].

The proof of Theorem 3.1 is accomplished by a series of lemmas. We
first verify that for each n, n = 1, 2, . . ., equation (1.2) has a unique con-
tinuously differentiable solution un(t). Then the uniformly boundedness of
{un(t)} and {u′n(t)} is established. Finally, we show that the strong limit
u(t) = limn→∞ un(t) exists uniformly on [0, T ], with u0 = φ, and satisfies (1.1)
for almost all t ∈ [0, T ].

Lemma 3.2. Assume that Conditions (D1)–(D4) hold, φ ∈ B is bounded and

continuously differentiable such that φ(0) ∈ D. Then there exists a unique

strongly continuously differentiable solution un(t) of (1.2) on [0, T ].
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Proof. In a manner similar to that of [11] Lemma 4.1, it can be shown that for
all n and x ∈ X , we have

(3.1) ‖An(t)x− An(s)x‖ ≤ |t− s|L1(‖x‖)(1 + ‖An(s)x‖),

where L1 is a nondecreasing function. Inequality (3.1) shows that An(t)x is
Lipschitz continuous in t for every x ∈ X . Also, An(t)x is uniformly Lipschitz
continuous in x for t ∈ [0, T ]. Thus, there exists a unique strongly continuously
differentiable solution un(t) of the approximate equation (1.2) on [0, T ]. �

Lemma 3.3. Assume that Conditions (D1)–(D4) hold. Also assume that

φ(0) = a ∈ D and φ is continuously differentiable. Then there exists K > 0,
such that ‖un(t)‖ ≤ K for all n = 1, 2, . . . and t ∈ [0, T ], where un(t) are the

solutions of (1.2).

Proof. First we extend φ to t ∈ (−∞, T ] by defining

φ(t) =

{

φ(0), t ∈ [0, T ],
φ(t), t ∈ (−∞, 0].

Then φt ∈ B for all t ∈ [0, T ], by (A1)(i) (see Definition 2.1). Since F (·, φ)
is continuous on [0, T ], we can find M1 > 0, such that ‖F (t, φ)‖ ≤ M1 for all
t ∈ [0, T ]. By the fact that un(t) is differentiable on [0, T ], the accretiveness of
An(t) and (D3), we have

〈u′
n
(t), J(un(t)− a)〉

= − 〈An(t)un(t)− F (t, unt
), J(un(t)− a)〉

= − 〈An(t)un(t)−An(t)a, J(un(t)− a)〉 − 〈An(t)a, J(un(t)− a)〉

+ 〈F (t, unt
)− F (t, φt), J(un(t)− a)〉 − 〈F (t, φt), J(un(t)− a)〉

≤ (‖An(t)a‖ + ‖F (t, unt
)− F (t, φt)‖+ ‖F (t, φt)‖)‖un(t)− a‖

≤ (‖An(t)a‖ +B‖unt
− φt‖B +M1)‖un(t)− a‖,

From (3.1) we obtain

‖An(t)a−An(0)a‖ ≤ tL1(‖a‖)(1 + ‖An(0)a‖

≤ TL1(‖a‖)(1 + ‖A(0)a‖),

which yields

‖An(t)a‖ ≤ TL1(‖a‖)(1 + ‖A(0)a‖) + ‖A(0)a‖ = K1.

Thus,

(3.2) 〈u′n(t), J(un(t)− a)〉 ≤ (K1 +B‖unt
− φ‖B +M1)‖un(t)− a‖.
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Since un(t) is strongly absolutely continuous, so is ‖un(t) − a‖. Thus,
d

dt
‖un(t)− a‖ exists a.e. and

‖un(t)− a‖
d

dt
‖un(t)− a‖ = 〈u′

n
(t), J(un(t)− a)〉.

So we obtain from (3.2) that

d

dt
‖un(t)− a‖ ≤ K1 +B‖unt

− φt‖B +M1

= K2 +B‖unt
− φt‖B,(3.3)

where K2 = K1 +M1. Now we integrate (3.3) to obtain

(3.4) ‖un(t)− a‖ ≤ K2t+B

∫ t

0

‖uns
− φs‖Bds, t ∈ [0, T ].

SetKT = sup0≤t≤T K(t), whereK(·) is the function in (A1). Then by (A1)(iii),
we have

‖unt
− φt‖B ≤ K(t) sup

0≤τ≤t

‖un(τ)− φ(τ)‖

≤ KT sup
0≤τ≤t

‖un(τ) − a‖.

Hence, from (3.4) we get

‖unt
− φt‖B ≤ KTK2t+BKT sup

0≤τ≤t

∫ τ

0

‖uns
− φs‖Bds

≤ KTK2t+BKT

∫

t

0

‖uns
− φs‖Bds, t ∈ [0, T ].(3.5)

An application of Gronwall’s inequality in (3.5) yields

(3.6) ‖unt
− φt‖B ≤ KTK2t exp(KTBt), t ∈ [0, T ]

and hence

‖unt
− φt‖B ≤ KTK2T exp(KTBT ), t ∈ [0, T ]

Therefor, by (A1)(ii),

‖un(t)− a‖ ≤ H‖unt
− φt‖B, t ∈ [0, T ]

from which follows the uniformly boundedness of {un(t)}, taking

K = KTK2T exp(KTBT ) + ‖a‖. �

Remark 3.4. From the proof of Lemma 3.3, it is easily seen that the constantK
defined above is also such that ‖unt

−φt‖B ≤ K, ‖unt
‖B ≤ K, and ‖un(t)‖ ≤ K

for all n = 1, 2, . . . and t ∈ [0, T ].

Similar to Lemma 2.4 in [10], we have the following
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Lemma 3.5. Let w ∈ C1([0, T ];X) be given. Then for any s ∈ [0, T ],

lim
h→0+

sup
0≤θ≤s

‖w(θ + h)− w(θ)‖/h

exists and equals

sup
0≤θ≤s

‖w′(θ)‖.

Lemma 3.6. Assume that the conditions of Lemma 3.3 hold. Then there exists

N > 0, such that ‖u′n(t)‖ ≤ N for all n = 1, 2, . . . and t ∈ [0, T ]. Here un(t)
are the solutions of (1.2).

Proof. Let zn(t) = un(t+ h)− un(t), (0 < h < t). Then,

‖zn(t)‖
d

dt
‖zn(t)‖ = 〈z′

n
(t), J(zn(t)〉

= − 〈An(t+ h)un(t+ h)−An(t)un(t), J(zn(t)〉

+ 〈F (t+ h, unt+h
)− F (t, unt

), J(zn(t)〉

= − 〈An(t+ h)un(t+ h)−An(t+ h)un(t), J(zn(t)〉

+ 〈An(t)un(t)−An(t+ h)un(t), J(zn(t)〉

+ 〈F (t+ h, unt+h
)− F (t+ h, unt

), J(zn(t)〉(3.7)

+ 〈F (t+ h, unt
)− F (t, unt

), J(zn(t)〉

≤ (hL1(‖un(t)‖)(1 + ‖An(t)un(t)‖)

+B‖unt+h
− unt

‖B + hg(‖unt
‖B))‖zn(t)‖

a.e. on [0, T ]. Here we have used the accretiveness of An(t+h), inequality (3.1),
conditions (D3) and (D4).

By Remark 3.4, there exists K ′ > 0, such that ‖unt
− φt‖B ≤ K ′, ‖unt

‖B ≤
K ′, and ‖un(t)‖ ≤ K ′ for all n = 1, 2, . . . and t ∈ [0, T ]. Since

‖An(t)un(t)‖ ≤ ‖u′
n
(t)‖ + ‖F (t, unt

)‖

≤ ‖u′
n
(t)‖ + ‖F (t, unt

− F (t, φt)‖+ ‖F (t, φt)‖

≤ ‖u′n(t)‖ +B‖unt
− φt‖B +M1

≤ ‖u′n(t)‖ +BK ′ +M1,

inequality (3.7) yields

d

dt
‖zn(t)‖ ≤ hC1 + hC2‖u

′
n
(t)‖+B‖unt+h

− unt
‖B,

where C1 = L1(K
′)(1 + BK ′ + M1) + g(K ′), C2 = L1(K

′). An integration
above gives

‖zn(t)‖ ≤ ‖zn(0)‖+ hC1T + hC2

∫

t

0

‖u′
n
(s)‖ds

+B

∫

t

0

‖uns+h
− uns

‖Bds,
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that is

‖un(t+ h)− un(t)‖/h ≤ ‖un(h)− un(0)‖/h+ C1T + C2

∫ t

0

‖u′n(s)‖ds

+B

∫ t

0

‖uns+h
− uns

‖B/hds.(3.8)

Set KT = sup0≤s≤T K(s) and MT = sup0≤s≤T M(s), where K(·) and M(·)
are the functions in (A1). Make use of (A1) to obtain

∫

t

0

‖uns+h
− uns

‖B/hds ≤ KT

∫

t

0

sup
0≤θ≤s

‖un(θ + h)− un(θ)‖/hds

+MT

∫

t

0

‖unh
− φ0‖B/hds

≤ KT

∫

t

0

sup
0≤θ≤s

‖un(θ + h)− un(θ)‖/hds

+MTT ‖unh
− φ0‖B/hds.(3.9)

From inequality (3.5) we get that

‖unh
− φ0‖B/h ≤ ‖unh

− φh‖B/h+ ‖φh − φ0‖B/h

≤ KTK2 exp(BKTT ) + ‖φh − φ0‖B/h.(3.10)

By Lemma 3.5, we have

(3.11) lim
h→0+

∫ t

0

sup
0≤θ≤s

‖un(θ + h)− un(θ)‖/hds =

∫ t

0

sup
0≤θ≤s

‖u′n(θ)‖ds.

Also we have that

lim
h→0+

‖un(h)− un(0)‖/h = ‖u′n(0)‖

≤ ‖An(0)un(0)‖+ ‖F (0, φ)‖

≤ ‖A(0)a‖+M1.(3.12)

An application of Lemma 2.2 yields that ‖φh − φ‖/h is bounded, i.e., there
exists M2 > 0 such that ‖φh − φ‖/h ≤ M2 for sufficiently small h. Thus we
can get from (3.8)-(3.12) that

‖u′n(t)‖ = lim
h→0+

‖un(t+ h)− un(t)‖/h

≤ C3 + C4

∫ t

0

sup
0≤θ≤s

‖u′n(θ)‖ds

for all t ∈ [0, T ], where C3 = ‖A(0)a‖+M1+C1T+BMTTKTK2(exp(BKTT )+
M2), C4 = C2 +BKT , and hence

sup
0≤θ≤t

‖u′n(θ)‖ ≤ C3 + C4

∫ t

0

sup
0≤θ≤s

‖u′n(θ)‖ds
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for all t ∈ [0, T ]. Therefore, {u′n(t)} is uniformly bounded, by Gronwall’s
inequality. �

Lemma 3.7. Assume that the conditions of Lemma 3.3 hold. Then the strong

limit limn→∞ un(t) exists uniformly on [0, T ].

Proof. Let xmn(t) = um(t)− un(t). Then we have, a.e. t

1

2

d

dt
‖xmn(t)‖

2 = 〈x′mn(t), J(xmn(t)〉

= − 〈Am(t)um(t)−An(t)un(t), J(xmn(t))〉

+ 〈F (t, umt
)− F (t, unt

), J(xmn(t))〉.(3.13)

Since Am(t)um(t) = A(t)Jm(t)um(t), An(t)un(t) = A(t)Jn(t)un(t) and A(t) is
accretive,

(3.14) 〈Am(t)um(t)−An(t)un(t), J(ymn(t))〉 ≥ 0,

where ymn(t) = Jm(t)um(t) − Jn(t)un(t). Adding (3.13) and (3.14), we get
a.e. t

1

2

d

dt
‖xmn(t)‖

2 ≤ 〈Am(t)um(t)−An(t)un(t), J(ymn(t)) − J(xmn(t))〉

+ 〈F (t, umt
)− F (t, unt

), J(xmn(t))〉

≤ ‖Am(t)um(t)−An(t)un(t)‖‖J(ymn(t))− J(xmn(t))‖

+B‖umt
− unt

‖B · ‖um(t)− un(t)‖.(3.15)

By the uniform boundedness of {un(t)} and {u′
n
(t)}, we get

‖An(t)un(t)‖ ≤ ‖u′n(t)‖+ ‖F (t, unt
)‖

≤ ‖u′n(t)‖+B‖unt
− φ‖B + ‖F (t, φ)‖

≤ N +BK ′ +M1 =M0.(3.16)

Hence, by (3.15), (3.16) and (A1)(ii),

1

2

d

dt
‖xmn(t)‖

2 ≤ 2M0‖J(ymn(t)) − J(xmn(t))‖

+B‖umt
− unt

‖B‖um(t)− un(t)‖

≤ 2M0‖J(ymn(t)) − J(xmn(t))‖ +HB‖umt
− unt

‖2B.

From the absolute continuity of ‖xmn(t)‖
2 and the fact that xmn(0) = 0, we

obtain

‖xmn(t)‖
2 = ‖um(t)− un(t)‖

2

≤ 4M0

∫ T

0

‖J(ymn(s))− J(xmn(s))‖ds+ 4BH

∫ t

0

‖ums
− uns

‖2Bds.

By (A1)(ii), we get

‖umt
− unt

‖2B ≤ K2
T ‖um(t)− un(t)‖

2
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≤ 4M0K
2
T

∫ T

0

‖J(ymn(s))− J(xmn(s))‖ds

+ 4BHK2
T

∫ t

0

‖ums
− uns

‖2Bds.

An application of Gronwall’s inequality yields

(3.17) ‖umt
− unt

‖2B ≤ C4

∫ T

0

‖J(ymn(s))− J(xmn(s))‖ds

for all t ∈ [0, T ], where C4 = 4M0K
2
T
exp(4BHK2

T
T ).

Now we observe that ‖xmn(t)‖ = ‖um(t) − un(t)‖ ≤ 2K ′. Also, by (3.16)
and the definition of Jn(t), we have

‖ymn(t)− xmn(t)‖ ≤ ‖Jm(t)um(t)− um(t)‖+ ‖Jn(t)un(t)− un(t)‖

≤
1

m
‖Am(t)um(t)‖ +

1

n
‖An(t)un(t)‖

≤
m+ n

mn
M0,

which tends to zero as m,n→ ∞. By the uniform continuity of J on bounded
subset of X , given ε > 0 we have that, ‖J(ymn(t))−J(xmn(t))‖ < ε, 0 ≤ t ≤ T ,
for all sufficiently large m,n. Thus, from (3.16), we have

lim
n→∞

unt
= ut

uniformly in t ∈ [0, T ]. Since

‖um(t)− un(t)‖ ≤ KT ‖umt
− unt

‖B,

the above limit implies that ‖um(t) − un(t)‖ → 0 uniformly in t ∈ [0, T ] as
m,n→ ∞. This implies in turn that

lim
n→∞

un(t) = u(t)

exists uniformly in t ∈ [0, T ]. �

Since un(t) is Lipschitz continuous with Lipschitz constant independent of n
(‖u′n(t)‖ ≤ N), the limit u(t) is also Lipschitz continuous with u(0) = φ(0) = a.
From unt

→ ut we also conclude that u0 = φ.

Lemma 3.8. Let the conditions of Lemma 3.3 hold. If u(t) = limn→∞ un(t)
(Lemma 3.7), then u(t) ∈ D for all t ∈ [0, T ], and A(t)u(t) is bounded and

weakly continuous. Moreover, the function −A(t)u(t) + F (t, ut) is Bochner

integrable and u(t) is an indefinite integral of −A(t)u(t)+F (t, ut). The strong

derivative u′(t) also exists a.e. t, and equals −A(t)u(t) + F (t, ut).

The proof of Lemma 3.8 follows as in Kato’s paper [11], and so it is omitted.
Now the proof of Theorem 3.1 has been accomplished.
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Let φ ∈ B satisfy the conditions of Theorem 3.1. Then, there is a corre-
sponding unique solution of (1.1), that we denote by u(t, φ).

Theorem 3.9. Assume that the conditions of Theorem 3.1 hold. Then the

mapping φ 7→ u(t, φ) is a Lipschitz continuous function of φ in the sense that,

there exists a constant L > 0, such that

‖u(t, φ)− u(t, ψ)‖ ≤ L‖φ− ψ‖B

for all t ∈ [0, T ] and φ, ψ ∈ B satisfying the conditions of Theorem 3.1.

Proof. We denote u(t) = u(t, φ), v(t) = u(t, ψ), and x(t) = u(t) − v(t). Then
x(t) is Lipschitz continuous, by Lemma 3.6, and hence ‖x(t)‖ is differentiable
a.e. on [0, T ]. Thus we have

‖x(t)‖
d

dt
‖x(t)‖ = − 〈A(t)u(t)−A(t)v(t), J(x(t))〉

+ 〈F (t, ut)− F (t, vt), J(x(t))〉

≤ B‖ut − vt‖B‖u(t)− v(t)‖,

a.e., and so

d

dt
‖x(t)‖ ≤ B‖ut − vt‖B

a.e. on [0, T ]. An integration of this inequality gives

‖x(t)‖ = ‖u(t)− v(t)‖ ≤ ‖φ(0)− ψ(0)‖+B

∫ t

0

‖us − vs‖Bds

≤ H‖φ− ψ‖B +B

∫ t

0

‖us − vs‖Bds(3.18)

for all t ∈ [0, T ]. From (A1)(iii) and (3.18), we have

‖ut − vt‖B ≤ KT sup
0≤θ≤t

‖u(θ)− v(θ)‖ +MT ‖φ− ψ‖B

≤ (KTH +MT )‖φ− ψ‖B +KTB

∫ t

0

‖us − vs‖Bds.

Consequently,

‖ut − vt‖B ≤ C5‖φ− ψ‖B,

for all t ∈ [0, T ], by Gronwall’s inequality, where C5=(KTH+MT ) exp(KTBT ).
Therefor, by (A1)(ii), we have

‖u(t)− v(t)‖ ≤ HC5‖φ− ψ‖B

for all t ∈ [0, T ]. �
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