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Abstract. In this paper, we deal with the uniqueness problem for the

power of p-adic meromorphic functions. The results obtained in this paper
are the p-adic analogues and supplements of the theorems given by Yang

and Zhang [Non-existence of meromorphic solution of a Fermat type func-
tional equation, Aequationes Math. 76(2008), 140-150], Chen, Chen and

Li [Uniqueness of difference operators of meromorphic functions, J. Ineq.

Appl. 2012(2012), Art 48], Zhang [Value distribution and shared sets of
differences of meromorphic functions, J. Math. Anal. Appl. 367(2010),

401-408].
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1. Introduction and main results

Mermorphic functions sharing values with their derivatives has become a sub-
ject of great interest in uniqueness theory recently. The paper by Rubel and Yang
is the starting point of this topic, along with the following.

Theorem 1.1. [27] Let f be a nonconstant entire function. If f and f ′ share
two distinct finite values CM, then f = f ′.

In 1996, R. Brück [9] posed the following conjecture: Let f be a nonconstant
entire function. Suppose that ρ1(f) is not a positive integer or infinite, if f and
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f ′ share one finite value a CM, then

f ′ − a
f − a

= c ,

for some non-zero constant c, where ρ1(f) is the first iterated order of f which
is defined by

ρ1(f) = lim sup
r→∞

log log T (r, f)

log r
.

In 1998, Gundersen and Yang [13] proved that the conjecture is true if f is of
finite order, and in 1999, Yang [31] generalized their result to the k-th deriva-
tives. In 2004, Chen and Shon [11] proved that the conjecture is true for entire
functions of first iterated order ρ1(f) < 1/2.

In 2008, Yang and Zhang considered the uniqueness problems on meromorphic
function fn sharing value with its first derivative. One of their results can be
stated as follows.

Theorem 1.2. [32] Let f(z) be a non-constant meromorphic function and n ≥
12 be an integer. Let F = fn. If F and F ′ share 1 CM, then F = F ′, and f
assumes the form f(z) = ce

1
n z.

In 2010, Zhang replaced F ′ by F (z + c) and proved the following theorem.

Theorem 1.3. [33] Set S1 = {1, ω, ..., ωn−1} and S2 = {∞}, where ω = cos 2π
n +

isin 2π
n . Suppose f is a nonconstant meromorphic function of finite order such

that Ef(z)(S1) = Ef(z+c)(S1) and Ef(z)(S2) = Ef(z+c)(S2). If n ≥ 4, then
f(z) = tf(z + c), where tn = 1.

In 2012, Chen, Chen and Li replaced F ′ by ∆cF where ∆cF = F (z+c)−F (z)
and proved the following theorem.

Theorem 1.4. [10] Let f(z) be a non-constant meromorphic function of finite
order and n ≥ 9 be an integer. Let F (z) = f(z)n. If F (z) and ∆cF share 1, ∞
CM, then F (z) = ∆cF .

In recent years, similar problems are investigated in non-Archimedean fields.
Now let K be an algebraically closed field of characteristic zero, complete for a
non-Archimedean absolute value. We denote by A(K) the ring of entire func-
tions in K and by M(K) the field of meromorphic functions. The value shaing
problems for meromorphic functions in K was investigated first in [1] and [20].
In recent years, numerous interesting results was obtained in the investigation
of the value-sharing problem for meromorphic function in K (see, for example,
[2],[4],[5], [7],[8], [12], [14]-[18], [21],[23]-[26], [28], [29]).
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Let us recall some basic definitions. For f ∈M(K) and S ⊂ K̂, we define

Ef (S) =
⋃
a∈S
{(z,m)|f(z) = a multiplicity m} ,

and we denote by Ekf (a) the set of all a-points of f where an a-point with mu-
tiplicity m is counted m times if m ≤ k and k + 1 times if m > k. It’s obvious
that if Ekf (a) = Ekg (a), then z0 is a zero of f − a with multiplicity m(≤ k) if and

only if it is a zero of g−a with multiplicity m(≤ k) and z0 is a zero of f −a with
multiplicity m(> k) if and only if it is a zero of g − a with multiplicity n(> k),
where m is not necessarily equal to n.

Let F be a nonempty subset of M(K). Two functions f , g of F are said
to share S, counting multiplicity(share S CM), if Ef (S) = Eg(S). Further, for
f ∈M(K), we define the shift of f as f(z+c), where c ∈ K is a nonzero constant.

In the present paper, we discuss the uniqueness problem for the power of
p-adic meromorphic functions and their shifts and prove the following theorems.

Theorem 1.5. Let f(z) be a p-adic meromorphic function and n ≥ 7 be an
integer. If Efn(z)(1) = Efn(z+c)(1) and Ef(z)(∞) = Ef(z+c)(∞), then f(z) =
tf(z + c), where tn = 1.

Corollary 1.6. Let f(z) be a p-adic entire function and n ≥ 5 be an integer. If
Efn(z)(1) = Efn(z+c)(1), then f(z) = tf(z + c), where tn = 1.

Theorem 1.7. Let f(z) be a p-adic meromorphic function and n ≥ 7 be an
integer. If E2

fn(z)(1) = E2
fn(z+c)(1) and Ef(z)(∞) = Ef(z+c)(∞), then f(z) =

tf(z + c), where tn = 1.

Theorem 1.8. Let f(z) be a p-adic meromorphic function and n ≥ 8 be an
integer. If E2

fn(z)(1) = E2
fn(z+c)(1) and E0

f(z)(∞) = E0
f(z+c)(∞), then f(z) =

tf(z + c), where tn = 1.

The main tool of the proof is the p-adic Nevanlinna theory (see, for example,
[20], [22], [19]). So in the next section, we establish the basic properties of the
characteristic functions of p-adic meromorphic functions.

2. Counting functions and Characteristic functions of p-adic
meromorphic functions

Let f be a nonconstant entire function on K and b ∈ K. Then we can write
f in the following form

f =

∞∑
n=q

bn(z − b)n ,
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where bq 6= 0 and we denote ω0
f (b) = q. For a point a ∈ K, we define the function

ωaf : K → N by ωaf (b) = ω0
f−a(b).

For a real number ρ with 0 < ρ ≤ r. Take a ∈ K and we set

Nf (a, r) =
1

lnρ

∫ r

ρ

nf (a, x)

x
dx ,

where nf (a, x) is the number of solutions of the equation f(z) = a(counting
multiplicities) in the disk Dx = {z ∈ K : |z| ≤ x}. If a = 0, the we set
Nf (r) = Nf (0, r).

If l is a positive integer, then we define

Nl,f (a, r) =
1

lnρ

∫ r

ρ

nl,f (a, x)

x
dx ,

where nl,f (a, x) =
∑
|z|≤r min{ωf−a(z), l}.

Let k be a positive integer. Define the function ωkf fromK intoN by ωkf (z) = 0

if ω0
f (z) > k and ωkf (z) = ω0

f (z) if ω0
f (z) ≤ k. And n≤kf (r) =

∑
|z|≤r ω

≤k
f (z),

n≤kf (a, r) = n≤kf−a(r).

Define

N≤kf (a, r) =
1

lnρ

∫ r

ρ

n≤kf (a, x)

x
dx ,

If a = 0, then we set N≤kf (r) = N≤kf (0, r). Set

N≤kl,f (a, r) =
1

lnρ

∫ r

ρ

n≤kl,f (a, x)

x
dx ,

where n≤kl,f (a, x) =
∑
|z|≤r min{ω≤kf−a(z), l}. In a similar way, we can define

N<k
f (a, r), N<k

l,f (a, r), N>k
f (a, r), N≥kf (a, r), N≥kl,f (a, r) and N>k

l,f (a, r) which are
called truncated counting function. Such notations was firstly introduced by
Han, Mori and Tohge [16], Han and Yi [17].

Recall that for a nonconstant entire function f(z) on K, represented by the
power series

f(z) =

∞∑
n=0

anz
n

for each r > 0, we define |f |r = max{|an|rn, 0 ≤ n <∞}.



Value Sharing and Uniqueness for the Power of P-adic Meromorphic Functions 43

Now let f = f1
f2

be a nonconstant meromorphic function on K, where f1 and

f2 are entire functions on K having no common zeros. We set |f |r = |f1|
|f2| . For a

point a ∈ K ∪ {∞}, we define the function ωaf : K → N by ωaf (b) = ω0
f1−af2(b)

with a 6=∞ and ω∞f (b) = ω0
f2

(b).

Taking a ∈ K, we denote the counting function of zeros of f−a, counting mul-
tiplicity, in the disk Dr = {z ∈ K : |z| ≤ r}, i.e. we set Nf (a, r) = Nf1−af2(r)
and set Nf (∞, r) = Nf2(r). In a similar way, for nonconstant meromorphic func-

tion on K, we can define N<k
f (a, r), N<k

l,f (a, r), N>k
f (a, r), N≥kf (a, r), N≥kl,f (a, r)

and N>k
l,f (a, r).

We define

mf (∞, r) = max{0, log|f |r}, mf (a, r) = m 1
f−a

(∞, r) ,

and then characteristic function of f by

Tf (r) = mf (∞, r) +Nf (∞, r) .

Thus we get

Nf (a, r) +mf (a, r) = Tf (r) +O(1) ,

where a ∈ K ∪ {∞} and

Tf (r) = T 1
f

(r) +O(1), m f(k)

f

(∞, r) = O(1) .

3. Some Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 3.1. [19][6] Let f be a nonconstant meromorphic function on K and
let a1, a2,...,aq be distinct points of K. Then

(q − 1)Tf (r) ≤ N1,f (∞, r) +

q∑
i=1

N1,f (ai, r)−N0,f ′(r)− logr +O(1)

By similar discussions as in [3], we can obtain the analogous lemmas in p-adic
case as follows:

Lemma 3.2. Let f and g be nonconstant meromorphic functions on K. If
Ef (1) = Eg(1) and Ef (∞) = Eg(∞), then one of the following three cases
holds:

(i) Tf (r) ≤ N1,f (0, r) +N≥2
1,f (0, r) +N1,g(0, r) +N≥2

1,g (0, r) +N1,f (∞, r)
+N1,g(∞, r)− logr +O(1) ,

(ii) f = g , (iii) fg = 1 .
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Proof. Set

H =

(
f ′′

f ′
− 2f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
.

First we suppose that H 6≡ 0. We consider the poles of H. It is clear that all
poles of H are of order 1. We can deduce from the definition of H that the poles
of H occur at the zeros of f ′ and g′ since Ef (1) = Eg(1) and Ef (∞) = Eg(∞).

It’s obvious that mH(∞, r) = O(1), and

N≤1
f (1, r) ≤ NH(0, r) ≤ TH(r) +O(1) ≤ NH(∞, r) +O(1)

≤ N≥2
1,f (0, r) +N≥2

1,g (0, r) +N1,0,f ′(r) +N1,0,g′(r) +O(1) , (1)

where N1,0,f ′(r) is the counting function of those zeros of f ′ that are not zeros
of f(f − 1), while each zero is counted with multiplicity 1.
On the other hand, by Lemma 3.1, we have

Tf (r) ≤ N1,f (∞, r) +N1,f (0, r) +N1,f (1, r)−N0,f ′(r)− logr +O(1) , (2)

Since Ef (1) = Eg(1), we note that

N1,f (1, r) = N≤1
f (1, r) +N≥2

1,f (1, r) = N≤1
f (1, r) +N≥2

1,g (1, r) , (3)

Then

Tf (r) ≤ N1,f (∞, r) +N1,f (0, r) +N≤1
f (1, r)

+N≥2
1,g (1, r)−N0,f ′(r)− logr +O(1) . (4)

Next we consider N≥2
1,g (1, r).

Ng′(0, r)−Ng(0, r) +N1,g(0, r) = N g′
g

(0, r) ≤ T g′
g

(r) +O(1)

= N g′
g

(∞, r) +m g′
g

(∞, r) +O(1) = N1,g(∞, r) +N1,g(0, r) +O(1) . (5)

So

Ng′(0, r) ≤ N1,g(∞, r) +Ng(0, r) +O(1) . (6)

Moreover

N0,g′(r) +N≥2
1,g (1, r) +N≥2

g (0, r)−N≥2
1,g (0, r) ≤ Ng′(0, r) , (7)

where N0,g′(r) is the counting function of those zeros of g′ that are not zeros of
g(g − 1). From (6) and (7) , we get

N0,g′(r) +N≥2
1,g (1, r) ≤ N1,g(∞, r) +N1,g(0, r) +O(1) . (8)

Combining (1), (4) and (8), we obtain

Tf (r) ≤ N1,f (0, r) +N≥2
1,f (0, r) +N1,g(0, r) +N≥2

1,g (0, r) +N1,f (∞, r)
+N1,g(∞, r)− logr +O(1) .
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Suppose H ≡ 0. Then by integration we get

f ≡ ag + b

cg + d
, (9)

where a, b, c and d are constants and ad− bc 6= 0. So Tf (r) = Tg(r) +O(1).

We now consider the following cases.

Case 1. Let ac 6= 0. Since Ef (∞) = Eg(∞), we can obtain that f and g have
no pole from (9). Since

f − a

c
=

bc− ad
c(cg + d)

, (10)

it follows that f − a
c has no zero. So By Lemma 3.1, we get

Tf (r) ≤ N1,f (∞, r) +N1,f− a
c
(0, r) +N1,f (0, r) +O(1) = N1,f (0, r) +O(1) ,

which implies (i).

Case 2. a 6= 0 and c = 0. Then f = a
dg + b

d . If b 6= 0, by Lemma 3.1,

Tf (r) ≤ N1,f (∞, r) +N1,f− b
d
(0, r) +N1,f (0, r) +O(1)

= N1,f (∞, r) +N1,g(0, r) +N1,f (0, r) +O(1) ,

which implies (i).

If b = 0, then f = ag
d . If a

d = 1, we obtain (ii). If a
d 6= 1, then by Ef (1) =

Eg(1) we get f 6= 1 and f 6= a
d . According to Lemma 3.1, we have

Tf (r) ≤ N1,f (∞, r) +N1,f (1, r) +N1,f (
a

d
, r) +O(1) = N1,f (∞, r) +O(1) ,

which implies (i).

Case 3. a = 0 and c 6= 0. Then f = b
cg+d . If d 6= 0, by Lemma 3.1,

Tf (r) ≤ N1,f (∞, r) +N1,f− b
d
(0, r) +N1,f (0, r) +O(1)

= N1,f (∞, r) +N1,g(0, r) +N1,f (0, r) +O(1) ,

which implies (i).

If d = 0, then f = b
cg . If b

c = 1, we obtain (iii). If b
c 6= 1, then by Ef (1) =

Eg(1) we get f 6= 1 and f 6= b
c . According to Lemma 3.1, we have

Tf (r) ≤ N1,f (∞, r) +N1,f (1, r) +N1,f (
b

c
, r) +O(1) = N1,f (∞, r) +O(1) ,

which implies (i). This completes the proof of the lemma. �
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Lemma 3.3. Let f and g be nonconstant meromorphic functions on K. If
E2
f (1) = E2

g(1) and Ef (∞) = Eg(∞), then one of the following three cases
holds:

(i) Tf (r) ≤ N1,f (0, r) +N≥2
1,f (0, r) +N1,g(0, r) +N≥2

1,g (0, r) +N1,f (∞, r)
+N1,g(∞, r)− logr +O(1) ,

(ii) f = g , (iii) fg = 1 .

Lemma 3.4. Let f and g be nonconstant meromorphic functions on K. If
E2
f (1) = E2

g(1) and E0
f (∞) = E0

g(∞), then one of the following three cases
holds:

(i) Tf (r) ≤ N1,f (0, r) +N≥2
1,f (0, r) +N1,g(0, r) +N≥2

1,g (0, r)

+N1,f (∞, r) +N1,g(∞, r) +N1,∗(∞, r)− logr +O(1) ,

(ii) f = g , (iii) fg = 1 .

where N1,∗(∞, r) denotes the reduced counting function of those poles of f whose
multiplicities differ from the multiplicities of the corresponding poles of g.

Lemma 3.5. [2] Let f be a nonconstant p-adic meromorphic function. Then

m f(z+c)
f

(∞, r) = O(1); Tf(z+c)(r) = Tf(z)(r) +O(1) .

4. Proof of Theorem 1.5

Let

F = fn(z), G = F (z + c) = fn(z + c) . (11)

Then it is easy to verify EF (1) = EG(1) and EF (∞) = EG(∞). Suppose the
Case (i) in Lemma 3.2 holds

TF (r) ≤ N1,F (0, r) +N≥2
1,F (0, r) +N1,G(0, r) +N≥2

1,G(0, r) +N1,F (∞, r)
+N1,G(∞, r)− logr +O(1) , (12)

It’s obvious that

N1,F (0, r) +N≥2
1,F (0, r) ≤ 2N1,F (0, r) = 2N1,f (0, r) ≤ 2Tf (r) . (13)

According to Lemma 3.5, we obtain

N1,G(0, r) +N≥2
1,G(0, r) ≤ 2N1,G(0, r) = 2N1,F (z+c)(0, r)

= 2N1,f(z+c)(0, r) ≤ 2Tf(z+c)(r) = 2Tf (r) +O(1) , (14)

N1,F (∞, r) = N1,f (∞, r) ≤ Tf (r) , (15)

N1,G(∞, r) = N1,F (z+c)(∞, r) = N1,f(z+c)(∞, r)
≤ Tf(z+c)(r) = Tf (r) +O(1) . (16)



Value Sharing and Uniqueness for the Power of P-adic Meromorphic Functions 47

Combining (12), (13), (14), (15) and (16), we deduce

TF (r) = nTf (r) ≤ 6Tf (r) +O(1) , (17)

that is,

(n− 6)Tf (r) ≤ O(1) , (18)

which contradicts with n ≥ 7. Therefore F = G or FG = 1.

If F = G, that is fn(z) = fn(z + c). So we deduce f(z) = tf(z + c), where t
is a constant and tn = 1.

If FG = 1, that is

f(z)f(z + c) = 1 . (19)

From (19) we obtain f(z) 6= 0,∞ and f(z+c)
f(z) = 1

f2(z) . According to Lemma 3.5,

we can deduce

Tf2(r) = T 1
f2

(r) +O(1) = T f(z+c)
f(z)

(r) +O(1)

= m f(z+c)
f(z)

(∞, r) +N f(z+c)
f(z)

(∞, r) +O(1) = O(1) , (20)

which is a contradiction. This completes the proof of Theorem 1.5.

5. Proof of Theorem 1.7

Let

F = fn(z), G = F (z + c) = fn(z + c) . (21)

Then it is easy to verify E2
F (1) = E2

G(1) and EF (∞) = EG(∞). Suppose the
Case (i) in Lemma 3.3 holds

TF (r) ≤ N1,F (0, r) +N≥2
1,F (0, r) +N1,G(0, r) +N≥2

1,G(0, r) +N1,f (∞, r)
+N1,g(∞, r)− logr +O(1) , (22)

Similar to the proof of Theorem 1.5, we can get the conclusion of Theorem 1.7.

6. Proof of Theorem 1.8

Let

F = fn(z), G = F (z + c) = fn(z + c) . (23)

Then it is easy to verify E2
F (1) = E2

G(1) and E0
F (∞) = E0

G(∞). Suppose the
Case (i) in Lemma 3.4 holds

TF (r) ≤ N1,F (0, r) +N≥2
1,F (0, r) +N1,G(0, r) +N≥2

1,G(0, r)

+N1,F (∞, r) +N1,G(∞, r) +N1,∗(∞, r)− logr +O(1) , (24)

It’s obvious that

N1,F (0, r) +N≥2
1,F (0, r) ≤ 2N1,F (0, r) = 2N1,f (0, r) ≤ 2Tf (r) , (25)
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And

N1,F (∞, r) = N1,f (∞, r) ≤ Tf (r) , (26)

N1,∗(∞, r) ≤ N1,F (∞, r) ≤ Tf (r) . (27)

According to Lemma 3.5, we obtain

N1,G(0, r) +N≥2
1,G(0, r) ≤ 2N1,G(0, r) = 2N1,F (z+c)(0, r)

= 2N1,f(z+c)(0, r) ≤ 2Tf(z+c)(r) = 2Tf (r) +O(1) , (28)

N1,G(∞, r) = N1,F (z+c)(∞, r) = N1,f(z+c)(∞, r)
≤ Tf(z+c)(r) = Tf (r) +O(1) . (29)

Combining (24), (25), (26), (27), (28) and (29), we deduce

TF (r) = nTf (r) ≤ 7Tf (r) +O(1) , (30)

that is,

(n− 7)Tf (r) ≤ O(1) , (31)

which contradicts with n ≥ 8. Therefore F = G or FG = 1. Similar to the proof
of Theorem 1.5, we can get the conclusion of Theorem 1.8.

7. Remarks

With S1 = {1, ω, ..., ωn−1} and S2 = {∞} , where ω = cos 2π
n + isin 2π

n , we
can get the following equivalent forms of Theorem 1.5, Corollary 1.6, Theorem
1.7 and Theorem 1.8 respectively.

Theorem 7.1. Let f(z) be a p-adic meromorphic function and n ≥ 7 be an
integer. If Ef(z)(S1) = Ef(z+c)(S1) and Ef(z)(S2) = Ef(z+c)(S2), then f(z) =
tf(z + c), where tn = 1.

Corollary 7.2. Let f(z) be a p-adic entire function and n ≥ 5 be an integer. If
Ef(z)(S1) = Ef(z+c)(S1), then f(z) = tf(z + c), where tn = 1.

Theorem 7.3. Let f(z) be a p-adic meromorphic function and n ≥ 7 be an
integer. If E2

f(z)(S1) = E2
f(z+c)(S1) and Ef(z)(S2) = Ef(z+c)(S2), then f(z) =

tf(z + c), where tn = 1.

Theorem 7.4. Let f(z) be a p-adic meromorphic function and n ≥ 8 be an
integer. If E2

f(z)(S1) = E2
f(z+c)(S1) and E0

f(z)(S2) = E0
f(z+c)(S2), then f(z) =

tf(z + c), where tn = 1.
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