• Title/Summary/Keyword: Existence Value

Search Result 869, Processing Time 0.027 seconds

EXISTENCE OF MULTIPLE PERIODIC SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS WITH SUBLINEAR GROWTH NONLINEARITIES

  • Kim, Wan-Se
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.691-699
    • /
    • 2009
  • In this paper, we establish a multiple existence result of T-periodic solutions for the semilinear parabolic boundary value problem with sublinear growth nonlinearities. We adapt sub-supersolution scheme and topological argument based on variational structure of functionals.

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

SOLUTIONS TO M-POINT BOUNDARY VALUE PROBLEMS OF THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS AT RESONANCE

  • XUE CHUNYAN;DU ZENGJI;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.229-244
    • /
    • 2005
  • In this paper, we study the third order ordinary differential equation : $$x'(t)=f(t,x(t),x'(t),x'(t)),t{\in}(0,1)$$ subject to the boundary value conditions: $$x'(0)=x'(\xi),x'(1)=^{m-3}{\Sigma}_{i=1}{{\beta}x'({\eta}i),x'(1)=0}$$. Here ${\beta}_{i}{\in}R,\;^{m-3}{\Sigma}_{i=1}\;{\beta}_{i}\;=\;1,\;0<{\eta}_1<{\eta}_2<{\cdots}<{\eta}_{m-3}<1,\;0<\xi<1$. This is the case dimKer L = 2. When the ${\beta}_i$ have different signs, we prove some existence results for the m-point boundary value problem at resonance by use of the coincidence degree theory of Mawhin [12, 13]. Since all the existence results obtained in previous papers are for the case dimKerL = 1, our work is new.

NONTRIVIAL SOLUTION FOR THE BIHARMONIC BOUNDARY VALUE PROBLEM WITH SOME NONLINEAR TERM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • We investigate the existence of weak solutions for the biharmonic boundary value problem with nonlinear term decaying at the origin. We get a theorem which shows the existence of nontrivial solutions for the biharmonic boundary value problem with nonlinear term decaying at the origin. We obtain this result by reducing the biharmonic problem with nonlinear term to the biharmonic problem with bounded nonlinear term and then approaching the variational method and using the mountain pass geometry for the reduced biharmonic problem with bounded nonlinear term.

POSITIVE SOLUTION FOR FOURTH-ORDER FOUR-POINT STURM-LIOUVILLE BOUNDARY VALUE PROBLEM

  • Sun, Jian-Ping;Wang, Xiao-Yun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.679-686
    • /
    • 2010
  • This paper is concerned with the following fourth-order four-point Sturm-Liouville boundary value problem $u^{(4)}(t)=f(t,\;u(t),\;u^{\prime\prime}(t))$, $0\;{\leq}\;t\;{\leq}1$, ${\alpha}u(0)-{\beta}u^{\prime}(0)={\gamma}u(1)+{\delta}u^{\prime}(1)=0$, $au^{\prime\prime}(\xi_1)-bu^{\prime\prime\prime}(\xi_1)=cu^{\prime\prime}(\xi_2)+du^{\prime\prime\prime}(\xi_2)=0$. Some sufficient conditions are obtained for the existence of at least one positive solution to the above boundary value problem by using the well-known Guo-Krasnoselskii fixed point theorem.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

EXISTENCE, MULTIPLICITY AND UNIQUENESS RESULTS FOR A SECOND ORDER M-POINT BOUNDARY VALUE PROBLEM

  • Feng, Yuqiang;Liu, Sang-Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.483-492
    • /
    • 2004
  • Let : [0, 1] $\times$ [0, $\infty$) $\longrightarrow$ [0, $\infty$) be continuous and a ${\in}$ C([0, 1], [0, $\infty$)),and let ${\xi}_{i}$ $\in$ (0, 1) with 0 < {\xi}$_1$ < ${\xi}_2$ < … < ${\xi}_{m-2}$ < 1, $a_{i}$, $b_{i}$ ${\in}$ [0, $\infty$) with 0 < $\Sigma_{i=1}$ /$^{m-2}$ $a_{i}$ < 1 and $\Sigma_{i=1}$$^{m-2}$ < l. This paper is concerned with the following m-point boundary value problem: $\chi$″(t)+a(t) (t.$\chi$(t))=0,t ${\in}$(0,1), $\chi$'(0)=$\Sigma_{i=1}$ $^{m-2}$ /$b_{i}$$\chi$'(${\xi}_{i}$),$\chi$(1)=$\Sigma_{i=1}$$^{m-2}$$a_{i}$$\chi$(${\xi}_{i}$). The existence, multiplicity and uniqueness of positive solutions of this problem are discussed with the help of two fixed point theorems in cones, respectively.