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NONTRIVIAL SOLUTION FOR THE BIHARMONIC

BOUNDARY VALUE PROBLEM WITH SOME

NONLINEAR TERM

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the existence of weak solutions for the
biharmonic boundary value problem with nonlinear term decaying at
the origin. We get a theorem which shows the existence of nontrivial
solutions for the biharmonic boundary value problem with nonlinear
term decaying at the origin. We obtain this result by reducing the
biharmonic problem with nonlinear term to the biharmonic problem
with bounded nonlinear term and then approaching the variational
method and using the mountain pass geometry for the reduced bi-
harmonic problem with bounded nonlinear term.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
p : Ω × R → R be a C1 function. In this paper we investigate the
number of weak solutions for the following biharmonic problem with

Received February 6, 2013. Revised June 3, 2013. Accepted June 10, 2013.
2010 Mathematics Subject Classification: 35J30, 35J40.
Key words and phrases: Biharmonic boundary value problem, nonlinear term

decaying at the origin, bounded nonlinear term, variational method, critical point
theory, mountain pass geometry, (PS) condition.

This work (Tacksun Jung) was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Ministry
of Education, Science and Technology (KRF-2010-0023985).

∗Corresponding author.
c⃝ The Kangwon-Kyungki Mathematical Society, 2013.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



118 Tacksun Jung and Q-Heung Choi

Dirichlet boundary condition

∆2u+ c∆u = p(x, u(x)) in Ω,(1.1)

u = 0, ∆u = 0 on ∂Ω.

We assume that p satisfies the followings:
(p1) p ∈ C1(Ω×R,R),
(p2) p(x, 0) = 0, p(x, ξ) = o(|ξ|) uniformly with respect to x ∈ Ω,
(p3) there exists ξ ≥ 0 such that p(x, ξ) ≤ 0 ∀x ∈ Ω,
(p4) there exist a constant r > 0 and an element e ∈ H such that
∥e∥ = r, e < ξ and 1

2
r2 −

∫
Ω
P (x, e) < 0, where H is introduced in

Section 2.
The eigenvalue problem

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω

has infinitely many eigenvalues λj, j ≥ 1 which is repeated as often as
its multiplicity, and the corresponding eigenfunctions ϕj, j ≥ 1 suitably
normalized with respect to L2(Ω) inner product. The eigenvalue problem

∆2u+ c∆u = Λu in Ω,(1.2)

u = 0, ∆u = 0 on ∂Ω

has also infinitely many eigenvalues Λj = λj(λj − c), j ≥ 1 and the
corresponding eigenfunctions ϕj, j ≥ 1. We note that

Λ1 < Λ2 ≤ Λ3 . . . , Λj → +∞.

Jung and Choi [4] showed the existence of at least two solutions, one of
which is bounded solution and the other is large norm solution of (1.1)
when p(u) is polynomial growth or exponential growth nonlinear term.
They proved this result by the variational method and the mountain
pass theorem. The authors [1,6] also investigate the multiple solutions
of nonlinear boundary value problems. For the constant coefficient non-
linear case Choi and Jung [3] showed that the problem

∆2u+ c∆u = bu+ + s in Ω,(1.3)

u = 0, ∆u = 0 on ∂Ω

has at least two nontrivial solutions when c < λ1, Λ1 < b < Λ2 and
s < 0) or when λ1 < c < λ2, b < Λ1 and s > 0. The authors obtained
these results by use of the variational reduction method. The authors
[5] also proved that when c < λ1, Λ1 < b < Λ2 and s < 0, (1.3) has at
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least three nontrivial solutions by use of the degree theory. Tarantello
[9] also studied the problem

∆2u+ c∆u = b((u+ 1)+ − 1) in Ω,(1.4)

u = 0, ∆u = 0 on ∂Ω.

She showed that if c < λ1 and b ≥ Λ1, then (1.4) has a negative solution.
She obtained this result by the degree theory. Micheletti and Pistoia [7]
also proved that if c < λ1 and b ≥ Λ2, then (1.4) has at least three
solutions by the vatiational linking theorem and Leray-Schauder degree
theory. In this paper we are trying to find weak solutions of (1.1), that
is, ∫

Ω

[∆2u · v + c∆u · v − p(x, u)v]dx = 0, ∀v ∈ H,

where H is introduced in Section 2.

We consider the associated functional of (1.1)

I(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − P (x, u)]dx,

where P (x, s) =
∫ s

0
p(x, τ)dτ . By (p1), I is well defined.

Our main result is the following.

Theorem 1.1. 1.1 Assume that c < λ1 and p satisfies the conditions
(p1)− (p4). Then (1.1) has at least one nontrivial weak solution.

We prove Theorem 1.1 by reducing the biharmonic problem (1.1)
to the biharmonic problem with bounded nonlinear term and then ap-
proaching the variational method and using the mountain pass geometry
for the reduced biharmonic problem with bounded nonlinear term. The
outline of the proof of Theorem 1.1 is as follows: In Section 2, we prove
that the functional I(u) ∈ C1 and the reduced functional Î of I satis-
fies the Palais Smale condition. In Section 3, we show that the reduced
functional Î satisfies the mountain pass geometry and so prove that Î
has at least one nontrivial critical point, from which we prove Theorem
1.1.
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2. Bounded nonlinear term

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkϕk with
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

(2.1) H = {u ∈ L2(Ω)|
∑

|Λk|h2
k < ∞}.

Then this is a complete normed space with a norm

∥u∥ = [
∑

|Λk|h2
k]

1
2 .

Since λk → +∞ and c is fixed, we have
(i) ∆2u+ c∆u ∈ H implies u ∈ H.
(ii) ∥u∥ ≥ C∥u∥L2(Ω) for some C > 0.
(iii) ∥u∥L2(Ω) = 0 if and only if ∥u∥ = 0,
which is proved in [2].

By the following Proposition 2.1, the weak solutions of (1.1) coincide
with the critical points of the associated functional I(u).

Proposition 2.1. Assume that c < λ1 and p satisfies the conditions
(p1) − (p4). Then I(u) is continuous and Fréchet differentiable in H
with Fréchet derivative

∇I(u)h =

∫
Ω

[∆u ·∆h− c∇u · ∇h− p(x, u)h]dx.

If we set

F (u) =
1

2

∫
Ω

P (x, u)dx,

where P (x, s) =
∫ s

0
p(x, τ)dτ , then F ′(u) is continuous with respect to

weak convergence, F ′(u) is compact, and

F ′(u)h =

∫
Ω

p(x, u)hdx for all h ∈ H,

this implies that I ∈ C1(H,R) and F (u) is weakly continuous.

The proof of Proposition 2.1 has the similar process to that of the
proof in Appendix B in [8].

Now we shall reduce the problem (1.1) to the problem with the
bounded nonlinear term.
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Lemma 2.1. Assume that c < λ1 and p satisfies the conditions (p1)−
(p4). Let

p̂(x, t) =

{
p(x, ξ) if t > ξ,
p(x, t) if t ≤ ξ.

Assume that u ∈ H is a solution of the equation

(2.2)

{
∆2u+ c∆u = p̂(x, u(x)) x ∈ Ω,
u = 0, ∆u = 0 on ∂Ω

Then u ≤ ξ, so u is a solution of (1.1).

Proof. By the standard regularity theorem, u ∈ W 2
p (Ω) ∀p < +∞,

and hence u ∈ C1(Ω). Let us set

C = {x ∈ Ω| u(x) > ξ}.

Then we have

(2.3)

{
−∆(−∆− c)u(x) ≤ 0 ∀x ∈ C,
u(x)|∂C ≤ ξ

For c < λ1 the operator −∆(−∆ − c) is a positive operator. It follows
from (2.3) that u(x) ≤ 0 in C. By (2.3), u(x)|∂C ≤ ξ. By the maximum
principle,

u(x) < ξ in C,

and hence C = ∅. Thus u(x) ≤ ξ, so it is a solution of (1.1).

By Lemma 2.1, it suffices to investigate the multiplicity of solutions of
(2.2) with bounded nonlinear term for the multiplicity results of solu-
tions of (1.1). Now we shall show that (2.2) has at least one nontrivial
solution by approaching the variational method and applying mountain
pass theorem in the critical point theory.

Let us consider the associated functional of (2.2)

(2.4) Î(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − P̂ (x, u)]dx,

where P̂ (x, s) =
∫ s

0
p̂(x, τ)dτ . By the same process as the proof of Propo-

sition 2.1, we can show that

Î(u) ∈ C1(H,R).

Now we shall show that Î(u) satisfies Palais-Smale condition.
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Lemma 2.2. Assume that c < λ1 and p satisfies the conditions (p1)−
(p4). Then the functional Î satisfies Palais-Smale condition: Any se-

quence (um) in H for which |Î(um)| ≤ M and Î ′(um) → 0 as m → ∞
possesses a convergent subsequence.

Proof. Let us choose u ∈ H. By p ∈ C1, P̂ (x, u) is bounded. Then
we have

Î(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − P̂ (x, u)]dx

≥ 1

2
{λ1(λ1 − c)}∥u∥2L2(Ω) −

∫
Ω

P̂ (x, u)dx.

Since λ1(λ1 − c) > 0, u ∈ H and
∫
Ω
P̂ (x, u)dx is bounded, Î(u) is

bounded from below. Thus Î satisfies the (PS) condition.

3. Proof of Theorem 1.1

We shall show that the functional Î satisfies the mountain pass ge-
ometry.

Lemma 3.1. Assume that c < λ1 and p satisfies the conditions (p1)−
(p4). Let

Bρ = {u ∈ H| ∥u∥ ≤ ρ}
and

Sρ = {u ∈ H| ∥u∥ = ρ}.
Then
(i) there is an e ∈ H with ∥e∥ = r such that

Î(e) ≤ 0,

and
(ii) there exist constants ρ, α > 0 such that ρ < r (r is a constant in
(p4)) and

inf
u∈Sρ

Î(u) ≥ α.

Proof. (i) By (p4), there exist a constant r > 0 and an element e ∈ H
such that ∥e∥ = r, e < ξ and 1

2
r2 −

∫
Ω
P (x, e) < 0. Then we have

Ĩ(e) =

∫
Ω

[
1

2
|∆e|2 − c

2
|∇e|2 − P̂ (x, e)]dx =

1

2
r2 −

∫
Ω

P (x, e) < 0.
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Thus (i) is proved.
(ii) Let r > 0 be a constant in (i). Let u ∈ H. By (p2) and (p4), there
exists a small number a > 0, ρ > 0 and a sphere Sρ with the radius ρ

such that ρ < r, a < 1
2
λ1(λ1 − c) and |P̂ (x, u)| ≤ a∥u∥2 if u ∈ Sρ. If we

choose u ∈ Sρ, then there exists a constant α > 0 such that

Î(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − P̂ (x, u)]dx

≥ 1

2
λ1(λ1 − c)∥u∥2Ω − a∥u∥L2(Ω)

= (
1

2
λ1(λ1 − c)− a)∥u∥2 ≥ α.

Proof of Theorem 1.1
We will show that Î(u) has a nontrivial critical point by the mountain

pass theorem. By Proposition 2.1, Î(u) is continuous and Fréchet differ-

entiable in H. By Lemma 2.2, the functional Î satisfies (PS) condition.
We note that I(0) = 0. By Lemma 3.1, there exist constants ρ > 0,

r > 0, α > 0 and e ∈ H with ∥e∥ = r such that ρ < r, infu∈Sρ Î(u) ≥ α,

and Î(e) < 0. Let us set

Γ = {γ ∈ C([0, 1], H)| γ(0) = 0, γ(1) = e}.

By the mountain pass theorem, Î possesses a critical value c ≥ α char-
acterized as

c = inf
γ∈Γ

max
u∈γ

I(u).

Thus we prove that Î has at least one nontrivial critical point, so (2.2)
has at least one nontrivial weak solution. By Lemma 2.1, this solution
of (2.2) is also a weak solution of (1.1). Thus (1.1) has at least one
nontrivial weak solution, and hence we prove Theorem 1.1.
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