• Title/Summary/Keyword: Euler sum

Search Result 44, Processing Time 0.024 seconds

SOME PROPERTIES OF DEGENERATED EULER POLYNOMIALS OF THE SECOND KIND USING DEGENERATED ALTERNATIVE POWER SUM

  • KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.599-609
    • /
    • 2017
  • We construct degenerated Euler polynomials of the second kind and find some basic properties of this polynomials. From this paper, we can see degenerated alternative power sum is defined and is related to degenerated Euler polynomials of the second kind. Using this power sum, we have a number of symmetric properties of degenerated Euler polynomials of the second kind.

SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS

  • KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.37-56
    • /
    • 2020
  • In this paper we discuss some interesting properties of (p, q)-special polynomials and derive various relations. We gain some relations between (p, q)-zeta function and (p, q)-special polynomials by considering (p, q)-analogue Euler sum types. In addition, we derive the relationship between (p, q)-polylogarithm function and (p, q)-special polynomials.

SOME PROPERTIES OF GENERALIZED q-POLY-EULER NUMBERS AND POLYNOMIALS WITH VARIABLE a

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.133-144
    • /
    • 2020
  • In this paper, we discuss generalized q-poly-Euler numbers and polynomials. To do so, we define generalized q-poly-Euler polynomials with variable a and investigate its identities. We also represent generalized q-poly-Euler polynomials E(k)n,q(x; a) using Stirling numbers of the second kind. So we explore the relation between generalized q-poly-Euler polynomials and Stirling numbers of the second kind through it. At the end, we provide symmetric properties related to generalized q-poly-Euler polynomials using alternating power sum.

GENERALIZED EULER POWER SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.591-600
    • /
    • 2020
  • This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions $$L_E(s,{\chi})={\sum\limits_{n=1}^{\infty}}{\frac{(-1)^n{\chi}(n)}{n^s}},\;Re(s)>0$$. Let Lp,E(s, t; χ) be the p-adic Euler L-function of two variables. In this paper, for any α ∈ ℂp, |α|p ≤ 1, we give a power series expansion of Lp,E(s, t; χ) in terms of the variable t. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that $$E_{-n,{\chi}}(t)={\sum\limits_{m=0}^{\infty}}\(\array{-n\\m}\)E_{-(m+n),{\chi}^{t^m}},\;n{\in}{\mathbb{N}}$$, where t ∈ ℂp with |t|p < 1. Some further properties for Lp,E(s, t; χ) has also been shown.

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.545-555
    • /
    • 2004
  • Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

A NOTE ON RECURRENCE FORMULA FOR VALUES OF THE EULER ZETA FUNCTIONS ζE(2n) AT POSITIVE INTEGERS

  • Lee, Hui Young;Ryoo, Cheon Seoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1425-1432
    • /
    • 2014
  • The Euler zeta function is defined by ${\zeta}_E(s)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^8}$. The purpose of this paper is to find formulas of the Euler zeta function's values. In this paper, for $s{\in}\mathbb{N}$ we find the recurrence formula of ${\zeta}_E(2s)$ using the Fourier series. Also we find the recurrence formula of $\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2_{n-1})^{2s-1}}$, where $s{\geq}2({\in}\mathbb{N})$.

On the historical investigation of Bernoulli and Euler numbers associated with Riemann zeta functions (수학사적 관점에서 오일러 및 베르누이 수와 리만 제타함수에 관한 탐구)

  • Kim, Tae-Kyun;Jang, Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.71-84
    • /
    • 2007
  • J. Bernoulli first discovered the method which one can produce those formulae for the sum $S_n(k)=\sum_{{\iota}=1}^n\;{\iota}^k$ for any natural numbers k. After then, there has been increasing interest in Bernoulli and Euler numbers associated with Riemann zeta functions. Recently, Kim have been studied extended q-Bernoulli numbers and q-Euler numbers associated with p-adic q-integral on $\mathbb{Z}_p$, and sums of powers of consecutive q-integers, etc. In this paper, we investigate for the historical background and evolution process of the sums of powers of consecutive q-integers and discuss for Euler zeta functions subjects which are studying related to these areas in the recent.

  • PDF

APPROXIMATE EULER-LAGRANGE-JENSEN TYPE ADDITIVE MAPPING IN MULTI-BANACH SPACES: A FIXED POINT APPROACH

  • Moradlou, Fridoun
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.319-333
    • /
    • 2013
  • Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces: $${\sum_{1{\leq}i_&lt;j{\leq}n}}\;f(\frac{r_ix_i+r_jx_j}{k})=\frac{n-1}{k}{\sum_{i=1}^n}r_if(x_i)$$.