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A NOTE ON RECURRENCE FORMULA FOR VALUES

OF THE EULER ZETA FUNCTIONS ζE(2n)

AT POSITIVE INTEGERS

Hui Young Lee and Cheon Seoung Ryoo

Abstract. The Euler zeta function is defined by ζE(s)=
∑∞

n=1
(−1)n−1

ns .
The purpose of this paper is to find formulas of the Euler zeta func-
tion’s values. In this paper, for s ∈ N we find the recurrence formula of
ζE(2s) using the Fourier series. Also we find the recurrence formula of
∑∞

n=1
(−1)n−1

(2n−1)2s−1 , where s ≥ 2(∈ N).

1. Introduction

The Euler zeta function is defined by ζE(s) =
∑

∞

n=1
(−1)n

ns (see [3, 4]). In
this paper we investigate the recurrence formula of the Euler zeta function for
s = 2n with Fourier series. By this result we can find ζE(2n) for all n ∈ N.

For s ∈ C, the Riemann zeta function or the Euler-Riemann zeta function,
ζ(s) is defined by

ζ(s) =

∞
∑

n=1

1

ns
(s ∈ C), (see [5, 6])

which converges when the real part of s is greater than 1. R. Apéry proved
that the number ζ(3) is irrational. But it is still an open problem to prove
irrationality of ζ(2k + 1) for the long time.

As well known special values, for any positive even number 2n,

ζ(2n) = (−1)n+1B2n(2π)
2n

2(2n)!
, (see [1])

where B2n are Bernoulli numbers. For negative integers, one has

ζ(−n) = −
Bn+1

n+ 1

for n ≥ 1.
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The constants En in the Taylor series expansion

F (t) =
2

et + 1
=

∞
∑

n=0

En

tn

n!
for |t| < π (see [3, 4, 6, 8]),

are well known as the Euler number. The Euler polynomials are also defined
by

2

et + 1
ext = eE(x)t =

∞
∑

n=0

En(x)
tn

n!
, |t| < π

with the usual convention about replacing E(x)n by En(x) (see [2, 3, 4, 5, 6,
7, 8]).

The recurrence formula of the Euler numbers is

(E + 1)n + En =

{

2 if n = 0,
0 if n ≥ 0.

In [3, 4], T. Kim find the relation of the Euler zeta function and the Euler
numbers. From this result, one can obtain values of the Euler zeta function.
But in our work, one has the recurrence formula of the Euler zeta function
itself and as a result one has values of the Euler zeta function without Euler
numbers in generally. Throughout this paper nPr denotes the permutation,
where nPr = n(n− 1)(n− 2) · · · (n− r + 1).

2. Fourier series

Definition 1 (Fourier Series). Let f(x) be function on (−p, p) with

f(x) =
a0

2
+

∞
∑

k=1

(

ak cos
kπx

p
+ bk sin

kπx

p

)

(see [9]).

Then it is called the Fourier series and coefficients are a0 = 1
p

∫ p

−p
f(x)dx,

an = 1
p

∫ p

−p
f(x) cos nπx

p
dx, bn = 1

p

∫ p

−p
f(x) sin nπx

p
dx.

Note that the Fourier series of f on (−p, p) converges to f(x) at points of

continuity and converges to f(x+)+f(x−)
2 at the point of discontinuities, where

f(x+) is the limit of right side at x, f(x−) is the limit of left side at x.

Remark. From p-test we know that

∞
∑

n=1

1

np
=

{

absolutely convergence if p > 1,
∞ if p ≤ 1.

If p = 2, then
∑

∞

n=1
1
n2 = ζ(2) = π2

6 . Also

∞
∑

n=1

1

n2
=

∞
∑

n=1

1

(2n)2
+

∞
∑

n=1

1

(2n− 1)2
=

1

4
ζ(2) +

∞
∑

n=1

1

(2n− 1)2
.
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Hence, we get the following:
∞
∑

n=1

1

(2n− 1)2
=
3

4

∞
∑

n=1

1

n2
=

3

4
ζ(2) =

π2

8
.

Let us consider f(x) on (−p, p). If one takes that f is an even function on
(−p, p), then one has coefficients as below:

a0 =
1

p

∫ p

−p

f(x)dx =
2

p

∫ p

0

f(x)dx,

an =
1

p

∫ p

−p

f(x) cos
nπx

p
dx =

2

p

∫ p

0

f(x) cos
nπx

p
dx,

bn =
1

p

∫ p

−p

f(x) sin
nπx

p
dx = 0.

Then the Fourier series of f on (−p, p) is given by

(1) f(x) =
a0

2
+

∞
∑

n=1

an cos
nπx

p
,

where a0 = 2
p

∫ p

0 f(x)dx, an = 2
p

∫ p

0 f(x) cos nπx
p

dx. Then it is called the cosine

series (see [9]).
Let f be an odd function on (−p, p). Then coefficients are as below;

(2)

a0 =
1

p

∫ p

−p

f(x)dx = 0,

an =
1

p

∫ p

−p

f(x) cos
nπx

p
dx = 0,

bn =
1

p

∫ p

−p

f(x) sin
nπx

p
dx =

2

p

∫ p

0

f(x) sin
nπx

p
dx.

Then the Fourier series of f on (−p, p) is given by

(3) f(x) =
∞
∑

n=1

bn sin
nπx

p
,

where bn = 2
p

∫ p

0 f(x) sin nπx
p

dx. Then it is called the sine series (see [9]).

Example 2. The sine series of Square wave function is given by

f(x) =

{

−1 if − π < x < 0,
1 if 0 ≤ x < π.

Above the Square wave function is an odd function and one has the sine
series as below:

f(x) =

∞
∑

n=1

bn sinnx,

where bn = 2
π

∫ π

0
1 · sinnxdx = 2

π

(

1−(−1)n

n

)

.
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Hence

f(x) =
4

π

∞
∑

n=1

1

2n− 1
sin (2n− 1)x.

Thus, we note that

1 = f(
π

2
) =

4

π

∞
∑

n=1

1

2n− 1
sin

2n− 1

2
π =

4

π

∞
∑

n=1

(−1)n−1

2n− 1
.

Therefore one has as below:

(4)
∞
∑

n=1

(−1)n−1

2n− 1
=

π

4
.

It is used as the initial value for
∑

∞

n=1
(−1)n−1

(2n−1)2s−1 in Section 4.

3. Euler-ζ-function

The Euler-ζ-function is well known as below:

(5) ζE(s) =

∞
∑

n=1

(−1)n−1

ns
, s ∈ C (see [4]).

Example 3. Let f(x) = x2, −2 < x < 2 which is an even function. Then

(6) f(x) =
a0

2
+

∞
∑

n=1

an cos
nπx

2
,

where a0 = 2
2

∫ 2

0 x2dx = 8
3 , an = 2

2

∫ 2

0 x2 cos nπx
2 dx = 16(−1)n

(nπ)2 .

Hence one has the following cosine series:

f(x) =
4

3
+

16

π2

∞
∑

n=1

(−1)n

n2
cos

nπx

2
, −2 < x < 2.

Taking x = 2 in f(x), we get ζ(2) = π2

6 . Taking x = 1 in f(x), we get

ζE(2) =
π2

12 , which is used as the initial value for ζE(2n) in Section 4.

Let f(x) = x3, −2 < x < 2. Then the sin series of f(x) on (−2, 2) is given
by

(7) f(x) =

∞
∑

n=1

bn sin
nπx

2
,

where bn = 2
2

∫ 2

0 x3 sin nπx
2 dx = − (−1)n24

nπ
+ (−1)n25×3

n3π3 . Then, if we take x = 1
in (7), we get easily the following:

∞
∑

n=1

(−1)n−1

(2n− 1)3
=

π3

25
.
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Let f(x) = x4, −2 < x < 2. Then the cosine series of f(x) on (−2, 2) is
given by

(8) f(x) =
a0

2
+

∞
∑

n=1

an cos
nπx

2
,

where a0 = 25

5 , an = (−1)n27

n2π2 − (−1)n28×3
n4π4 . Then, if we take x = 1 in (8), we get

easily the following:

ζE(4) =

∞
∑

n=1

(−1)n−1

n4
=

7π4

24 × 32 × 5
.

4. Recurrence formulas of the Euler zeta function ζE(2s) for s ∈ N

and
∑

∞

n=1
(−1)n−1

(2n−1)2s−1
for s ∈ N

To generalize this process, we consider two functions f(x) = x2m, f(x) =
x2m−1, where −2 < x < 2. Firstly, let f(x) = x2m on −2 < x < 2. Since f(x)
is an even function, we apply the cosine series for f(x) is given by

(9) f(x) =
a0

2
+

∞
∑

n=1

an cos
nπx

2
, −2 < x < 2,

where a0 = 22m+1

2m+1 , an =
∑m

k=1(−1)k+1
2mP2k−12

2m−2k+1 22k

n2kπ2k cosnπ.

From (9), for s ≥ 2(∈ N) we take the following two formulas:

(10)
s

∑

k=1

(−1)k2sP2k−1
1

22kπ2k
ζE(2k) =

2s+ 1− 22s

(2s+ 1)(22s+1)
,

(11)

s−1
∑

k=1

(−1)k2s−2P2k−1
1

22kπ2k
ζE(2k) =

2s− 1− 22(s−1)

(2s− 1)(22s−1)
.

From (10) and (11) we get the formula as below:

(12)

ζE(2s) =
(2π)2s

(−1)s2sP2s−1

{ 1

22s+1

22s+1 − 12s2 + 3

(2s− 1)(2s+ 1)

−

s−1
∑

k=1

(−1)k
1

(2π)2k
ζE(2k)

(

2sP2k−1 − 2s−2P2k−1

)

}

.

Therefore from (12) one has the following theorem.

Theorem 4. For s ≥ 2(∈ N) and ζE(2) =
π2

12 , we get as below:

ζE(2s) =
(2π)2s

(−1)s2sP2s−1

{ 1

22s+1

22s+1 − 12s2 + 3

(2s− 1)(2s+ 1)

−

s−1
∑

k=1

(−1)k
1

(2π)2k
ζE(2k)

(

2sP2k−1 − 2s−2P2k−1

)

}

,
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where nPr is the permutation.

Note that T. Kim find the Euler zeta function with using the second kind
Euler numbers as follows:

ζE(2n) =
(−1)nπ2n(2 − 4n)

2(2n− 1)!(1− 4n)
E2n−1 (see [4]).

Secondly, let f(x) = x2m−1 on −2 < x < 2, m ≥ 1. The sin series of f(x)
on −2 < x < 2 is given by

(13) f(x) =
∞
∑

n=1

bn sin
nπx

2
,

where bn =
∫ 2

0 x2m−1 sin nπx
2 dx.

By simple calculations we get the coefficient bn as below:

(14) bn = (−1)n22m
m
∑

k=1

(−1)k2m−1P2(k−1)

( 1

nπ

)2k−1
.

So we apply the sin series to above (14) and we take x = 1. Then one has
the following:

(15)

1 =
∞
∑

n=1

(−1)n22m
m
∑

k=1

(−1)k2m−1P2(k−1)

( 1

nπ

)2k−1
sin

nπ

2

=

∞
∑

n=1

(−1)2n−122m
m
∑

k=1

(−1)k2m−1P2(k−1)

( 1

(2n− 1)π

)2k−1
(−1)n−1

= 22m
m
∑

k=1

(−1)k−1
2m−1P2(k−1)

1

π2k−1

∞
∑

n=1

(−1)n−1

(2n− 1)2k−1
.

From (15), we get following two relations:

(16)
1

22s
=

s
∑

k=1

(−1)k−1
2s−1P2(k−1)

1

π2k−1

∞
∑

n=1

(−1)n−1

(2n− 1)2k−1
,

(17)
1

22(s−1)
=

s−1
∑

k=1

(−1)k−1
2s−3P2(k−1)

1

π2k−1

∞
∑

n=1

(−1)n−1

(2n− 1)2k−1
.

From (16)-(17), one has the following formula:
∞
∑

n=1

(−1)n−1

(2n− 1)2s−1

=
(−1)s−1π2s−1

2s−1P2(s−1)

[

−
3

4s

+

s−1
∑

k=1

(−1)k
1

π2k−1

(

∞
∑

n=1

(−1)n−1

(2n− 1)2k−1
(2s−1P2(k−1) − 2s−3P2(k−1))

)

]

.
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Theorem 5. For s ≥ 2(∈ N) and
∑

∞

n=1
(−1)n−1

2n−1 = π
4 , one has as below:

∞
∑

n=1

(−1)n−1

(2n− 1)2s−1

=
(−1)s−1π2s−1

2s−1P2(s−1)

[

−
3

4s

+

s−1
∑

k=1

(−1)k
1

π2k−1

(

∞
∑

n=1

(−1)n−1

(2n− 1)2k−1
(2s−1P2(k−1) − 2s−3P2(k−1))

)

]

,

where nPr is the permutation.

Note that T. Kim find the relationship between
∑

∞

k=0
(−1)k

(2k+1)(2n+1) and the

second kind Euler polynomials as follows:
∞
∑

k=0

(−1)k

(2k + 1)(2n+1)
= (−1)n

E2n(
1
2 )

(2n)!4
π2n+1 (see [4]).
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