References
- R. Ayoub, Euler and zeta function, Amer. Math. Monthly 81 (1974), 1067-1086. https://doi.org/10.2307/2319041
-
T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on
$\mathbb{Z}_p$ at q = −1, J. Math. Anal. Appl. 331 (2007), no. 2, 779-792. https://doi.org/10.1016/j.jmaa.2006.09.027 - T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal. 2008 (2008), Article ID 581582, 11 pages.
- T. Kim, J. Choi, and Y. H. Kim, A note on values of Euler zeta functions at positive integers, Adv. Stud. Contemp. Math. 22 (2012), no. 1, 27-34.
- D. S. Kim and T. Kim, Euler basis, identities, and their applications, Int. J. Math. Math. Sci. 2012 (2012), Article ID 343981, 15 pages.
- D. S. Kim, T. Kim, W. J. Kim, and D. V. Dolgy, A note on Eulerian polynomials, Abstr. Appl. Anal. 2012 (2012), Article ID 269640, 10 pages.
- H. Ozden, Y. Simsek, S.-H. Rim, and I. N. Cangul, A note on p-adic q-Euler measure, Adv. Stud. Contemp. Math. 14 (2007), no. 2, 233-239.
- S. H. Rim and T. Kim, A note on q-Euler numbers associated with the basic q-zeta function, Appl. Math. Lett. 20 (2007), no. 4, 366-369. https://doi.org/10.1016/j.aml.2006.04.019
- D. G. Zill and W. S. Wright, Advanced Engineering Mathematics. 4th, Textbooks, 2009.
Cited by
- ON THE RECURRENCE FORMULA OF THE EULER ZETA FUNCTIONS vol.29, pp.2, 2016, https://doi.org/10.14403/jcms.2016.29.2.283