• Title/Summary/Keyword: Euler Society

Search Result 1,097, Processing Time 0.026 seconds

CONVERGENCE OF THE GENERALIZED IMPLICIT EULER METHOD

  • Yu, Dong-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • We introduce the generalized Runge-Kutta methods with the exponentially dominant order .omega. in [3], and the convergence theorems of the generalized explicit Euler method are derived in [4]. In this paper we will study the convergence of the generalized implicit Euler method.

  • PDF

A NOTE ON THE q-EULER NUMBERS AND POLYNOMIALS WITH WEAK WEIGHT α AND q-BERNSTEIN POLYNOMIALS

  • Lee, H.Y.;Jung, N.S.;Kang, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.523-531
    • /
    • 2013
  • In this paper we construct a new type of $q$-Bernstein polynomials related to $q$-Euler numbers and polynomials with weak weight ${\alpha}$ ; $E^{(\alpha)}_{n,q}$, $E^{(\alpha)}_{n,q}(x)$ respectively. Some interesting results and relationships are obtained.

SOME PROPERTIES OF DEGENERATED EULER POLYNOMIALS OF THE SECOND KIND USING DEGENERATED ALTERNATIVE POWER SUM

  • KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.599-609
    • /
    • 2017
  • We construct degenerated Euler polynomials of the second kind and find some basic properties of this polynomials. From this paper, we can see degenerated alternative power sum is defined and is related to degenerated Euler polynomials of the second kind. Using this power sum, we have a number of symmetric properties of degenerated Euler polynomials of the second kind.

A RESEARCH ON A NEW APPROACH TO EULER POLYNOMIALS AND BERNSTEIN POLYNOMIALS WITH VARIABLE [x]q

  • JUNG, NAM SOON;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.205-215
    • /
    • 2017
  • In this paper, we consider a modified Euler polynomials ${\tilde{E}}_{n,q}(x)$ with variable $[x]_q$ and investigate some interesting properties of the Euler polynomials. We also give some relationships between the modified Euler polynomials and their Hurwitz zeta function. Finally, we derive some identities associated with Bernstein polynomials.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

Leonhard Euler, the founder of topology (위상수학의 시조 Euler)

  • Kim, Sang-Wook;Lee, Seung-On
    • Journal for History of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2006
  • Topology began to be studied relatively later than the other branches of mathematics, such as geometry, algebra and analysis. Leonhard Euler is generally considered to be the founder of topology. In this paper we first investigate the beginning of topology and its development and then study Euler's life and his achievements in mathematics.

  • PDF

A NOTE ON q-ANALOGUE OF POLY-EULER POLYNOMIALS AND ARAKAWA-KANEKO TYPE ZETA FUNCTION

  • KIM, YOUNG ROK;LEE, HUI YOUNG;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.611-623
    • /
    • 2020
  • In this paper, we define a q-analogue of the poly-Euler numbers and polynomials which is generalization of the poly Euler numbers and polynomials including q-analogue of polylogarithm function. We also give the relations between generalized poly-Euler polynomials. Furthermore, we introduce zeta fuctions of Arakawa-Kaneko type and talk their properties and the relation with q-analogue of poly-Euler polynomials.