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A NOTE ON THE q-EULER NUMBERS AND POLYNOMIALS

WITH WEAK WEIGHT α AND q-BERNSTEIN
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Abstract. In this paper we construct a new type of q-Bernstein polyno-

mials related to q-Euler numbers and polynomials with weak weight α ;

E
(α)
n,q , E

(α)
n,q (x) respectively. Some interesting results and relationships are

obtained.
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1. Introduction

The q-Euler numbers and polynomials with weak weight α is introduced by
H.Y. Lee, N.S. Jung, C.S. Ryoo. The main motivation of this paper is the paper
[3,4,6-10] by Kim, in which he introduced and studied relations of the q-Euler
numbers and polynomials with weight α and q-Bernstein polynomials. The Euler
numbers and polynomials possess many interesting properties and rising in many
areas of mathematics and physics. Recently, many mathematicians have studied
in the area of the q-Euler numbers and polynomials (see [8,9,11,13,16,17,18]).

In this paper, we construct a new type of q-Euler numbers E
(α)
n,q and polyno-

mials E
(α)
n,q (x). We introduce the q-Euler numbers and polynomials with weak

weight α and observe relations of the q-Euler numbers and polynomials with
weak weight α and q-Bernstein polynomials. The p-adic q-integral are origi-
nally constructed by Kim [15]. In various parts, we use the p-adic q-integral.
Throughout this paper we use the following notations. By Zp we denote the ring
of p-adic rational integers, Qp denotes the field of p-adic rational numbers, Cp

denotes the completion of algebraic closure of Qp, N denotes the set of natural
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numbers, Z denotes the ring of rational integers, Q denotes the field of rational
numbers, C denotes the set of complex numbers, and Z+ = N ∪ {0}. Let νp be

the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When
one talks of q-extension, q is considered in many ways such as an indeterminate,
a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally

assume that |q| < 1. If q ∈ Cp, we normally assume that |q − 1|p < p−
1

p−1 so
that qx = exp(x log q) for |x|p ≤ 1. Throughout this paper we use the notation:

[x]q =
1− qx

1− q
, [x]−q =

1− (−q)x

1 + q
(cf. [2,3,6,7,10,11,12,14,15]) .

limq→1[x]q = x for any x with |x|p ≤ 1 in the present p-adic case. To investigate
relation of the twisted q-Euler numbers and polynomials weak weight α and the
q-Bernstein polynomials, we will use useful property for [x]q as following;

[x]q = 1− [1− x]q

[1− x]q = 1− [x]q (1.1)

[1− x]q−1 = −q[1− x]q

For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
the fermionic p-adic q-integral on Zp is defined by Kim as follows:

I−q(g) =

∫
Zp

g(x)dµ−q(x) = lim
N→∞

1

[pN ]−q

pN−1∑
x=0

g(x)(−q)x (cf. [3-6]) . (1.2)

Let
Tp = ∪m≥0Cpm = lim

m→∞
Cpm ,

where Cpm = {w|wpm

= 1} is the cyclic group of order pm. For w ∈ Tp, we
denote by ϕw : Zp → Cp the locally constant function x 7−→ wx.

From (1.2), we obtain

qnI−q(gn) + (−1)n−1I−q(g) = [2]q

n−1∑
l=0

(−1)n−1−lqlg(l), (1.3)

where gn(x) = g(x+ n) (cf. [10]).

If we take g1(x) = g(x+ 1) in (1.3), then we easily see that

qI−q(g1) + I−q(g) = [2]qg(0). (1.4)

The q-Euler numbers and polynomials with weak weight α are defined as
follows;

For α ∈ Z and q ∈ Cp with |1− q|p ≤ 1, q-Euler numbers E
(α)
n,q are defined by

E(α)
n,q =

∫
Zp

[x]nq dµ−qα(x). (1.5)
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E(α)
n,q (x) =

∫
Zp

[x+ y]nq dµ−qα(y). (1.6)

with the usual convention of replacing
(
E

(α)
q (x)

)n

by E
(α)
n,q (x). In the special

case, x = 0, E
(α)
n,q (0) = E

(α)
n,q are called the n-th q-Euler numbers with weak

weight α.
In [18], C.S. Ryoo, H.Y. Lee, N.S. Jung introduced (h, q)-Euler numbers

and polynomials; E
(h)
n,q , E

(h)
n,q(x). We can find a little difference between (h, q)-

Euler numbers and polynomials and q-Euler numbers and polynomials with weak
weight α.

Our aim in this paper is to investigate relations of q-Euler numbers E
(α)
n,q and

polynomials E
(α)
n,q (x) with weak weight α and q-Bernstein polynomials. First,

we investigate some properties which are related to q-Euler numbers E
(α)
n,q and

polynomials E
(α)
n,q (x) with weak weight α. The next, We derive the relations of

q-Bernstein polynomials with q-Euler numbers E
(α)
n,q and polynomials E

(α)
n,q (x)

with weak weight α at negative integers.

2. Main results

From (1.5),(1.6), we can derive the following recurrence formula for the q-
Euler numbers and polynomials with weight α :

E(α)
n,q = [2]qα

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)l

1

1 + qα+l

= [2]qα
∞∑

m=0

(−1)mqαm[m]nq .

(2.1)

E(α)
n,q (x) = [2]qα

(
1

1− q

)n n∑
l=0

(
n

l

)
(−1)lqxl

1

1 + qα+l

=
n∑

l=0

(
n

l

)
[x]n−l

q qxlE
(α)
l,q

=
(
[x]q + qxE(α)

q

)n

.

(2.2)

By (2.1),(2.2), we have properties as below;

For n ∈ Z+, we have

qαE(α)
n,q (1) + E(α)

n,q =

{
[2]qα , if n = 0,
0, if n > 0.

(2.3)
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For n ∈ Z+, we have

qα(qE(α)
q + 1)n + E(α)

n,q =

{
[2]qα , if n = 0,
0, if n > 0,

(2.4)

with the usual convention of replacing (E
(α)
q )n by E

(α)
n,q .

Theorem 2.1. For n ∈ Z+

E(α)
n,q (2) = q−α[2]qα + q−2αE(α)

n,q .

Proof. By (1.3) we easily see that

[2]qα
n−1∑
l=0

(−1)n−1−lqαl[l]mq = qαnE(α)
m,q(n) + (−1)n−1E(α)

m,q.

Take n = 2, then we have Theorem 2.1. �

Theorem 2.2. For n, k ∈ Z+, with n > k, we have

∫
Zp

Bk,n(x, q)dµ−qα(x) =

(
n

k

) k∑
l=0

(
k

l

)
(−1)k−l

(
[2]qα + q2αE

(α)
n−l,q−1

)
=

{
qα[2]qα + q2αE

(α)
n,q−1 , if k = 0,

q2α
(
n
k

)∑k
l=0

(
k
l

)
(−1)k−lE

(α)
n−l,q−1 , if k > 0,

Proof. By definition of q-Euler polynomials with weak weight α , we get the
following; ∫

Zp

[x+ 2]nq dµ−qα(x) = E(α)
n,q (2).

By using p-adic q-integral and (1.1), we obtain a property as follows;∫
Zp

[1− x]nq−1dµ−qα(x) =

∫
Zp

(−q)n[1− x]nq dµ−qα(x)

= (−q)nE(α)
n,q (−1)

= (−q)n(−1)nq−nE
(α)

n,q−1(2)

= E
(α)

n,q−1(2)

= qα[2]q−α + q2αE
(α)

n,q−1 .

(2.5)

For x ∈ Zp, the p-adic q-Bernstein polynomials of degree n are given by

Bk,n(x, q) =

(
n

k

)
[x]kq [1− x]n−k

q−1 where n, k ∈ Z+. (2.6)
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By (2.6), we get the symmetry of q-Bernstein polynomials as follows;

Bk,n(x, q) = Bn−k,n(1− x, q−1). (2.7)

Thus by (2.5) and (2.7)∫
Zp

Bk,n(x, q)dµ−qα (x) =

∫
Zp

Bn−k,n(1− x, q−α)dµ−qα (x)

=

∫
Zp

(n
k

)
[x]kq [1− x]n−k

q−1 dµ−qα (x)

=

∫
Zp

(n
k

)
(1− [1− x]q−1 )k[1− x]n−k

q−1 dµ−qα (x)

=

∫
Zp

(n
k

)( k∑
l=0

(k
l

)
(−1)k−l[1− x]k−l

q−1

)
[1− x]n−k

q−1 dµ−qα (x)

=
(n
k

) k∑
l=0

(k
l

)
(−1)k−l

∫
Zp

[1− x]n−l
q−1dµ−qα (x)

=
(n
k

) k∑
l=0

(k
l

)
(−1)k−l

(
qα[2]qα + q2αE

(α)

n−l,q−1

)
.

(2.8)

�

Theorem 2.3. Let n, k ∈ Z+ with n > k. Then we have

n−k∑
l=0

(
n− k

l

)
E

(α)
k+l,q =

{
q2αE

(α)
n,q−1 + qα[2]qα , if k = 0

q2α
∑k

l=0

(
k
l

)
(−1)k−lE

(α)
n−l,q−1 , if k > 0.

Proof. Let us take the fermionic q-integral on Zp for the q-Bernstein polynomials
of degree n as follows;∫

Zp

Bk,n(x, q)dµ−qα(x) =

(
n

k

)∫
Zp

[x]kq [1− x]n−k
q−1 dµ−qα(x)

=

(
n

k

)∫
Zp

[x]kq (1− [x]q)
n−k dµ−qα(x)

=

(
n

k

)∫
Zp

[x]kq

(
n−k∑
l=0

(
n− k

l

)
(−1)l[x]lq

)
dµ−qα(x)

=

(
n

k

)
n−k∑
l=0

(
n− k

l

)
(−1)l

∫
Zp

[x]k+l
q dµ−qα(x)

=

(
n

k

)
n−k∑
l=0

(
n− k

l

)
(−1)lE

(α)
k+l,q.

(2.9)

�
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Theorem 2.4. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k. Then we have∫
Zp

Bk,n1
(x, q)Bk,n2

(x, q)dµ−qα(x)

=

{
q2αE

(α)
n1+n2−l,q−1 + qα[2]qα , if k = 0

q2α
(
n1

k

)(
n2

k

)∑2k
l=0

(
2k
l

)
(−1)2k−lE

(α)
n1+n2−l,q−1 , if k > 0

Proof. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k, then we get

∫
Zp

Bk,n1(x, q)Bk,n2(x, q)dµ−qα(x)

=

(
n1

k

)(
n2

k

)∫
Zp

[x]2kq [1− x]n1+n2−2k
q−1 dµ−qα(x)

=

(
n1

k

)(
n2

k

) 2k∑
l=0

(
2k

l

)
(−1)2k−l

∫
Zp

[1− x]n1+n2−l
q−1 dµ−qα(x)

=

(
n1

k

)(
n2

k

) 2k∑
l=0

(
2k

l

)
(−1)2k−l

(
[2]qα + q2αE

(α)
n1+n2−l,q−1

)
.

(2.11)

�

Theorem 2.5. Let n1, n2, k ∈ Z+ with n1 + n2 > 2k, then we get

n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)lE

(α)
2k+l,q

=

{
q2αE

(α)
n1+n2,q−1 + qα[2]qα , if k = 0

q2α
∑2k

l=0

(
2k
l

)
(−1)2k−lE

(α)
n1+n2−l,q−1 , if k > 0

Proof. From the binomial theorem, we can derive the following equation.

∫
Zp

Bk,n1(x, q)Bk,n2(x, q)dµ−qα(x)

=

(
n1

k

)(
n2

k

)∫
Zp

[x]2kq [1− x]n1+n2−2k
q−1 dµ−qα(x)

=

(
n1

k

)(
n2

k

) n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)l

∫
Zp

[x]2k+l
q dµ−qα(x)

=

(
n1

k

)(
n2

k

) n1+n2−2k∑
l=0

(
n1 + n2 − 2k

l

)
(−1)lE

(α)
2k+l,q.

(2.11)

�
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Theorem 2.6. For n1, n2, n2, · · · , ns, k ∈ Z+ with n1 + n2 + · · ·+ ns > sk, we
have ∫

Zp

s∏
i=1

Bk,ni(x, q)dµ−qα(x)

=
s∏

i=1

(
ni

k

) sk∑
l=0

(
sk

l

)
(−1)sk−l

(
qα[2]qα + q2αE

(α)
m−l,q−1

)
=

{
q2αE

(α)
m−l,q−1 + qα[2]qα , if k = 0

q2α
∏s

i=1

(
ni

k

)∑sk
l=0

(
sk
l

)
(−1)sk−lE

(α)
m−l,q−1 , if k > 0

where n1 + · · ·+ ns = m.

Proof. For n1, n2, · · · , ns, k ∈ Z+ , n1+n2+ · · ·+ns > sk, and let
∑s

i=1 ni = m,
then by the symmetry of q-Bernstein polynomials, we see that∫

Zp

s∏
i=1

B
(α)
k,ni

(x, q)dµ−qα(x)

=
s∏

i=1

(
ni

k

) sk∑
l=0

(
sk

l

)
(−1)sk−l

∫
Zp

[1− x]m−l
q−1 dµ−qα(x)

=
s∏

i=1

(
ni

k

) sk∑
l=0

(
sk

l

)
(−1)sk−l

(
[2]qα + q2αE

(α)
m−l,q−1

)
.

(2.12)

�
Corollary 2.7. Let m ∈ N. For n1, n2, . . . , ns, k ∈ Z+ with n1 + · · ·+ ns > sk,
we have

sk∑
l=0

(
sk

l

)
(−1)sk−l

(
qα[2]qα + q2αE

(α)
m−l,q−1

)
=

m−sk∑
l=0

(−1)l
(
m− sk

l

)
E

(α)
sk+l,q,

where n1 + · · ·+ ns = m.

Proof. ∫
Zp

s∏
i=1

Bk,ni(x, q)dµ−qα(x)

=
s∏

i=1

(
ni

k

)∫
Zp

[x]skq

m−sk∑
l=0

(−1)l
(
m− sk

l

)
(−1)l[x]lqdµ−qα(x)

=

s∏
i=1

(
ni

k

)m−sk∑
l=0

(−1)l
(
m− sk

l

)
E

(α)
sk+l,q,

(2.13)

where n1, n2, · · · , ns, k ∈ Z+ with m = n1 + n2 + · · ·+ ns > sk. �
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