A NOTE ON THE q-EULER NUMBERS AND POLYNOMIALS WITH WEAK WEIGHT α AND q-BERNSTEIN POLYNOMIALS ${ }^{\dagger}$

H.Y. LEE*, N.S. JUNG, J.Y. KANG

Abstract

In this paper we construct a new type of q-Bernstein polynomials related to q-Euler numbers and polynomials with weak weight α; $E_{n, q}^{(\alpha)}, E_{n, q}^{(\alpha)}(x)$ respectively. Some interesting results and relationships are obtained.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80.
Key words and phrases : q-Bernstein polynomials, q-Euler numbers and polynomials, Weak weight α,Euler numbers and polynomials, q-Euler numbers and polynomials.

1. Introduction

The q-Euler numbers and polynomials with weak weight α is introduced by H.Y. Lee, N.S. Jung, C.S. Ryoo. The main motivation of this paper is the paper [3,4,6-10] by Kim, in which he introduced and studied relations of the q-Euler numbers and polynomials with weight α and q-Bernstein polynomials. The Euler numbers and polynomials possess many interesting properties and rising in many areas of mathematics and physics. Recently, many mathematicians have studied in the area of the q-Euler numbers and polynomials (see $[8,9,11,13,16,17,18]$). In this paper, we construct a new type of q-Euler numbers $E_{n, q}^{(\alpha)}$ and polynomials $E_{n, q}^{(\alpha)}(x)$. We introduce the q-Euler numbers and polynomials with weak weight α and observe relations of the q-Euler numbers and polynomials with weak weight α and q-Bernstein polynomials. The p-adic q-integral are originally constructed by Kim [15]. In various parts, we use the p-adic q-integral. Throughout this paper we use the following notations. By \mathbb{Z}_{p} we denote the ring of p-adic rational integers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, \mathbb{C}_{p} denotes the completion of algebraic closure of $\mathbb{Q}_{p}, \mathbb{N}$ denotes the set of natural

[^0]numbers, \mathbb{Z} denotes the ring of rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{C} denotes the set of complex numbers, and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. Let ν_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$ one normally assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. Throughout this paper we use the notation:
$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad[x]_{-q}=\frac{1-(-q)^{x}}{1+q}(\text { cf. }[2,3,6,7,10,11,12,14,15]) .
$$
$\lim _{q \rightarrow 1}[x]_{q}=x$ for any x with $|x|_{p} \leq 1$ in the present p-adic case. To investigate relation of the twisted q-Euler numbers and polynomials weak weight α and the q-Bernstein polynomials, we will use useful property for $[x]_{q}$ as following;
\[

$$
\begin{gather*}
{[x]_{q}=1-[1-x]_{q}} \\
{[1-x]_{q}=1-[x]_{q}} \tag{1.1}\\
{[1-x]_{q^{-1}}=-q[1-x]_{q}}
\end{gather*}
$$
\]

For

$$
g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p} \text { is uniformly differentiable function }\right\}
$$

the fermionic p-adic q-integral on \mathbb{Z}_{p} is defined by Kim as follows:

$$
\begin{equation*}
I_{-q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} g(x)(-q)^{x}(\text { cf. }[3-6]) . \tag{1.2}
\end{equation*}
$$

Let

$$
T_{p}=\cup_{m \geq 0} C_{p^{m}}=\lim _{m \rightarrow \infty} C_{p^{m}}
$$

where $C_{p^{m}}=\left\{w \mid w^{p^{m}}=1\right\}$ is the cyclic group of order p^{m}. For $w \in T_{p}$, we denote by $\phi_{w}: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$ the locally constant function $x \longmapsto w^{x}$.

From (1.2), we obtain

$$
\begin{equation*}
q^{n} I_{-q}\left(g_{n}\right)+(-1)^{n-1} I_{-q}(g)=[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{l} g(l) \tag{1.3}
\end{equation*}
$$

where $g_{n}(x)=g(x+n)($ cf. [10] $)$.
If we take $g_{1}(x)=g(x+1)$ in (1.3), then we easily see that

$$
\begin{equation*}
q I_{-q}\left(g_{1}\right)+I_{-q}(g)=[2]_{q} g(0) \tag{1.4}
\end{equation*}
$$

The q-Euler numbers and polynomials with weak weight α are defined as follows;
For $\alpha \in \mathbb{Z}$ and $q \in \mathbb{C}_{p}$ with $|1-q|_{p} \leq 1, q$-Euler numbers $E_{n, q}^{(\alpha)}$ are defined by

$$
\begin{equation*}
E_{n, q}^{(\alpha)}=\int_{\mathbb{Z}_{p}}[x]_{q}^{n} d \mu_{-q^{\alpha}}(x) \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
E_{n, q}^{(\alpha)}(x)=\int_{\mathbb{Z}_{p}}[x+y]_{q}^{n} d \mu_{-q^{\alpha}}(y) . \tag{1.6}
\end{equation*}
$$

with the usual convention of replacing $\left(E_{q}^{(\alpha)}(x)\right)^{n}$ by $E_{n, q}^{(\alpha)}(x)$. In the special case, $x=0, E_{n, q}^{(\alpha)}(0)=E_{n, q}^{(\alpha)}$ are called the n-th q-Euler numbers with weak weight α.

In [18], C.S. Ryoo, H.Y. Lee, N.S. Jung introduced (h, q)-Euler numbers and polynomials; $E_{n, q}^{(h)}, E_{n, q}^{(h)}(x)$. We can find a little difference between (h, q) Euler numbers and polynomials and q-Euler numbers and polynomials with weak weight α.

Our aim in this paper is to investigate relations of q-Euler numbers $E_{n, q}^{(\alpha)}$ and polynomials $E_{n, q}^{(\alpha)}(x)$ with weak weight α and q-Bernstein polynomials. First, we investigate some properties which are related to q-Euler numbers $E_{n, q}^{(\alpha)}$ and polynomials $E_{n, q}^{(\alpha)}(x)$ with weak weight α. The next, We derive the relations of q-Bernstein polynomials with q-Euler numbers $E_{n, q}^{(\alpha)}$ and polynomials $E_{n, q}^{(\alpha)}(x)$ with weak weight α at negative integers.

2. Main results

From (1.5),(1.6), we can derive the following recurrence formula for the q Euler numbers and polynomials with weight α :

$$
\begin{align*}
E_{n, q}^{(\alpha)} & =[2]_{q^{\alpha}}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{1}{1+q^{\alpha+l}} \\
& =[2]_{q^{\alpha}} \sum_{m=0}^{\infty}(-1)^{m} q^{\alpha m}[m]_{q}^{n} . \tag{2.1}\\
E_{n, q}^{(\alpha)}(x) & =[2]_{q^{\alpha}}\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} \frac{1}{1+q^{\alpha+l}} \\
& =\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{x l} E_{l, q}^{(\alpha)} \tag{2.2}\\
& =\left([x]_{q}+q^{x} E_{q}^{(\alpha)}\right)^{n} .
\end{align*}
$$

By (2.1),(2.2), we have properties as below;

For $n \in \mathbb{Z}_{+}$, we have

$$
q^{\alpha} E_{n, q}^{(\alpha)}(1)+E_{n, q}^{(\alpha)}= \begin{cases}{[2]_{q^{\alpha}},} & \text { if } n=0 \tag{2.3}\\ 0, & \text { if } n>0\end{cases}
$$

For $n \in \mathbb{Z}_{+}$, we have

$$
q^{\alpha}\left(q E_{q}^{(\alpha)}+1\right)^{n}+E_{n, q}^{(\alpha)}= \begin{cases}{[2]_{q^{\alpha}},} & \text { if } n=0 \tag{2.4}\\ 0, & \text { if } n>0\end{cases}
$$

with the usual convention of replacing $\left(E_{q}^{(\alpha)}\right)^{n}$ by $E_{n, q}^{(\alpha)}$.

Theorem 2.1. For $n \in \mathbb{Z}_{+}$

$$
E_{n, q}^{(\alpha)}(2)=q^{-\alpha}[2]_{q^{\alpha}}+q^{-2 \alpha} E_{n, q}^{(\alpha)} .
$$

Proof. By (1.3) we easily see that

$$
[2]_{q^{\alpha}} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{\alpha l}[l]_{q}^{m}=q^{\alpha n} E_{m, q}^{(\alpha)}(n)+(-1)^{n-1} E_{m, q}^{(\alpha)} .
$$

Take $n=2$, then we have Theorem 2.1.
Theorem 2.2. For $n, k \in \mathbb{Z}_{+}$, with $n>k$, we have

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{-q^{\alpha}}(x) & =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l}\left([2]_{q^{\alpha}}+q^{2 \alpha} E_{n-l, q^{-1}}^{(\alpha)}\right) \\
& = \begin{cases}q^{\alpha}[2]_{q^{\alpha}}+q^{2 \alpha} E_{n, q^{-1}}^{(\alpha)}, & \text { if } k=0 \\
q^{2 \alpha}\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l} E_{n-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
\end{aligned}
$$

Proof. By definition of q-Euler polynomials with weak weight α, we get the following;

$$
\int_{\mathbb{Z}_{p}}[x+2]_{q}^{n} d \mu_{-q^{\alpha}}(x)=E_{n, q}^{(\alpha)}(2) .
$$

By using p-adic q-integral and (1.1), we obtain a property as follows;

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} d \mu_{-q^{\alpha}}(x) & =\int_{\mathbb{Z}_{p}}(-q)^{n}[1-x]_{q}^{n} d \mu_{-q^{\alpha}}(x) \\
& =(-q)^{n} E_{n, q}^{(\alpha)}(-1) \\
& =(-q)^{n}(-1)^{n} q^{-n} E_{n, q^{-1}}^{(\alpha)}(2) \tag{2.5}\\
& =E_{n, q^{-1}}^{(\alpha)}(2) \\
& =q^{\alpha}[2]_{q^{-\alpha}}+q^{2 \alpha} E_{n, q^{-1}}^{(\alpha)}
\end{align*}
$$

For $x \in \mathbb{Z}_{p}$, the p-adic q-Bernstein polynomials of degree n are given by

$$
\begin{equation*}
B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k} \quad \text { where } n, k \in \mathbb{Z}_{+} . \tag{2.6}
\end{equation*}
$$

By (2.6), we get the symmetry of q-Bernstein polynomials as follows;

$$
\begin{equation*}
B_{k, n}(x, q)=B_{n-k, n}\left(1-x, q^{-1}\right) \tag{2.7}
\end{equation*}
$$

Thus by (2.5) and (2.7)

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{-q^{\alpha}}(x) & =\int_{\mathbb{Z}_{p}} B_{n-k, n}\left(1-x, q^{-\alpha}\right) d \mu_{-q^{\alpha}}(x) \\
& =\int_{\mathbb{Z}_{p}}\binom{n}{k}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k} d \mu_{-q^{\alpha}}(x) \\
& =\int_{\mathbb{Z}_{p}}\binom{n}{k}\left(1-[1-x]_{q^{-1}}\right)^{k}[1-x]_{q^{-1}}^{n-k} d \mu_{-q^{\alpha}}(x) \\
& =\int_{\mathbb{Z}_{p}}\binom{n}{k}\left(\sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l}[1-x]_{q^{-1}}^{k-l}\right)[1-x]_{q^{-1}}^{n-k} d \mu_{-q^{\alpha}}(x) \tag{2.8}\\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n-l} d \mu_{-q^{\alpha}}(x) \\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l}\left(q^{\alpha}[2]_{q^{\alpha}}+q^{2 \alpha} E_{n-l, q^{-1}}^{(\alpha)}\right) .
\end{align*}
$$

Theorem 2.3. Let $n, k \in \mathbb{Z}_{+}$with $n>k$. Then we have

$$
\sum_{l=0}^{n-k}\binom{n-k}{l} E_{k+l, q}^{(\alpha)}= \begin{cases}q^{2 \alpha} E_{n, q^{-1}}^{(\alpha)}+q^{\alpha}[2]_{q^{\alpha}}, & \text { if } k=0 \\ q^{2 \alpha} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k-l} E_{n-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
$$

Proof. Let us take the fermionic q-integral on \mathbb{Z}_{p} for the q-Bernstein polynomials of degree n as follows;

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{-q^{\alpha}}(x) & =\binom{n}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k} d \mu_{-q^{\alpha}}(x) \\
& =\binom{n}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{k}\left(1-[x]_{q}\right)^{n-k} d \mu_{-q^{\alpha}}(x) \\
& =\binom{n}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{k}\left(\sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l}[x]_{q}^{l}\right) d \mu_{-q^{\alpha}}(x) \tag{2.9}\\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q}^{k+l} d \mu_{-q^{\alpha}}(x) \\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} E_{k+l, q}^{(\alpha)} .
\end{align*}
$$

Theorem 2.4. Let $n_{1}, n_{2}, k \in \mathbb{Z}_{+}$with $n_{1}+n_{2}>2 k$. Then we have

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) d \mu_{-q^{\alpha}}(x) \\
& = \begin{cases}q^{2 \alpha} E_{n_{1}+n_{2}-l, q^{-1}}^{(\alpha)}+q^{\alpha}[2]_{q^{\alpha}}, & \text { if } k=0 \\
q^{2 \alpha}\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k-l} E_{n_{1}+n_{2}-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
\end{aligned}
$$

Proof. Let $n_{1}, n_{2}, k \in \mathbb{Z}_{+}$with $n_{1}+n_{2}>2 k$, then we get

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) d \mu_{-q^{\alpha}}(x) \\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{2 k}[1-x]_{q^{-1}}^{n_{1}+n_{2}-2 k} d \mu_{-q^{\alpha}}(x) \\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k-l} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n_{1}+n_{2}-l} d \mu_{-q^{\alpha}}(x) \tag{2.11}\\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k-l}\left([2]_{q^{\alpha}}+q^{2 \alpha} E_{n_{1}+n_{2}-l, q^{-1}}^{(\alpha)}\right) .
\end{align*}
$$

Theorem 2.5. Let $n_{1}, n_{2}, k \in \mathbb{Z}_{+}$with $n_{1}+n_{2}>2 k$, then we get

$$
\begin{aligned}
& \sum_{l=0}^{n_{1}+n_{2}-2 k}\binom{n_{1}+n_{2}-2 k}{l}(-1)^{l} E_{2 k+l, q}^{(\alpha)} \\
& = \begin{cases}q^{2 \alpha} E_{n_{1}+n_{2}, q^{-1}}^{(\alpha)}+q^{\alpha}[2]_{q^{\alpha}}, & \text { if } k=0 \\
q^{2 \alpha} \sum_{l=0}^{2 k}\binom{k}{l}(-1)^{2 k-l} E_{n_{1}+n_{2}-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
\end{aligned}
$$

Proof. From the binomial theorem, we can derive the following equation.

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) d \mu_{-q^{\alpha}}(x) \\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{2 k}[1-x]_{q^{-1}}^{n_{1}+n_{2}-2 k} d \mu_{-q^{\alpha}}(x) \\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{n_{1}+n_{2}-2 k}\binom{n_{1}+n_{2}-2 k}{l}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q}^{2 k+l} d \mu_{-q^{\alpha}}(x) \tag{2.11}\\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{n_{1}+n_{2}-2 k}\binom{n_{1}+n_{2}-2 k}{l}(-1)^{l} E_{2 k+l, q^{*}}^{(\alpha)}
\end{align*}
$$

Theorem 2.6. For $n_{1}, n_{2}, n_{2}, \cdots, n_{s}, k \in \mathbb{Z}_{+}$with $n_{1}+n_{2}+\cdots+n_{s}>s k$, we have

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} \prod_{i=1}^{s} B_{k, n_{i}}(x, q) d \mu_{-q^{\alpha}}(x) \\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{s k-l}\left(q^{\alpha}[2]_{q^{\alpha}}+q^{2 \alpha} E_{m-l, q^{-1}}^{(\alpha)}\right) \\
& = \begin{cases}q^{2 \alpha} E_{m-l, q^{-1}}^{(\alpha)}+q^{\alpha}[2]_{q^{\alpha}}, & \text { if } k=0 \\
q^{2 \alpha} \prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{s k-l} E_{m-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
\end{aligned}
$$

where $n_{1}+\cdots+n_{s}=m$.
Proof. For $n_{1}, n_{2}, \cdots, n_{s}, k \in \mathbb{Z}_{+}, n_{1}+n_{2}+\cdots+n_{s}>s k$, and let $\sum_{i=1}^{s} n_{i}=m$, then by the symmetry of q-Bernstein polynomials, we see that

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \prod_{i=1}^{s} B_{k, n_{i}}^{(\alpha)}(x, q) d \mu_{-q^{\alpha}}(x) \\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{s k-l} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{m-l} d \mu_{-q^{\alpha}}(x) \tag{2.12}\\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{s k-l}\left([2]_{q^{\alpha}}+q^{2 \alpha} E_{m-l, q^{-1}}^{(\alpha)}\right) .
\end{align*}
$$

Corollary 2.7. Let $m \in \mathbb{N}$. For $n_{1}, n_{2}, \ldots, n_{s}, k \in \mathbb{Z}_{+}$with $n_{1}+\cdots+n_{s}>s k$, we have

$$
\begin{aligned}
& \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{s k-l}\left(q^{\alpha}[2]_{q^{\alpha}}+q^{2 \alpha} E_{m-l, q^{-1}}^{(\alpha)}\right) \\
& =\sum_{l=0}^{m-s k}(-1)^{l}\binom{m-s k}{l} E_{s k+l, q}^{(\alpha)}
\end{aligned}
$$

where $n_{1}+\cdots+n_{s}=m$.
Proof.

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \prod_{i=1}^{s} B_{k, n_{i}}(x, q) d \mu_{-q^{\alpha}}(x) \\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{s k} \sum_{l=0}^{m-s k}(-1)^{l}\binom{m-s k}{l}(-1)^{l}[x]_{q}^{l} d \mu_{-q^{\alpha}}(x) \tag{2.13}\\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{m-s k}(-1)^{l}\binom{m-s k}{l} E_{s k+l, q}^{(\alpha)},
\end{align*}
$$

where $n_{1}, n_{2}, \cdots, n_{s}, k \in \mathbb{Z}_{+}$with $m=n_{1}+n_{2}+\cdots+n_{s}>s k$.

References

1. M. Acikgoz, S. Araci,, A study on the integral of the product of several type Bernstein polynomials, IST Transaction of Applied Mathematics-Modelling and Simulation, 2010.
2. A. Bayad, T. Kim, B. Lee, and S.-H. Rim, Some Identities on Bernstein Polynomials Associated with q-Euler Polynomials,Abstract and Applied Analysis, Article ID 294715, 10 pages, 2011.
3. I.N. Cangul, V. Kurt, H. Ozden, Y. Simsek, On the higher-order- $w-q$-Genocchi numbers, Adv. Stud. Contemp. Math, vol 19, pp 39-57, 2009.
4. V. Gupta, T. Kim, J. Choi, Y.-H.Kim, Generating function for q-Bernstein, q-Meyer KonigZeller and q-Beta basis, Automation Computers Applied Mathematics, vol 19, pp 7-11.2010.
5. L.C. Jang, W.-J. Kim, Y. Simsek, A study on the p-adic integral representation on \mathbb{Z}_{p} associated with Bernstein and Bernoulli polynomials, Advances in Difference Equations, Article ID 163217, 6pp, 2010.
6. T. Kim,A note on q-Bernstein polynomials,Russ.J.Math.Phys(accepted)
7. T. Kim, L.C. Jang, H. Yi, A note on the modified q-Bernstein polynomials, Discrete Dynamics in Nature and society, Article ID 706483, 13pp, 2010.
8. T. Kim,A study on the q-Euler numbers and the fermionic q-integrals of the product of several type q-Bernstein polynomials on \mathbb{Z}_{\mid}
9. T. Kim, J. Choi, Y.H. Kim, and C.S. Ryoo, On the Fermionic p-adic Integral Representation of Bernstein Polynomials Associated with Euler Numbers and Polynomials, Journal of Inequalities and Applications, Article ID 864247,12page. 2010.
10. T. Kim, A. Bayad, and Y.-H. Kim, A Study on the p-Adic q-Integral Representation on \mathbb{Z}_{\mid}Associated with the Weighted q-Bernstein and q-Bernoulli Polynomials, Journal of Inequalities and Applications, Article ID 513821, 8 pages, 2011.
11. T. Kim, On the q-extension of Euler and Genocchi numbers, Journal of Mathematical Analysis and Applications, (326), 1458-1465. 2007.
12. T. Kim, J. Choi, Y-.H. Kim, C.S. Ryoo, A Note on the weighted p-adic q-Euler measure on \mathbb{Z}_{p}, Advan. Stud. Contemp. Math., vol 21, pp 35-40, 2011.
13. T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. vol 14, pp 15-27, 2007.
14. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. vol 9, pp 288-299, 2002.
15. Y. Simsek, M. Acikgoz, A new generating funtion of q-Bernstein-type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095, 12pp, 2010.
16. C.S. Ryoo, T. Kim, L.-C. Jang, Some relationships between the analogs of Euler numbers and polynomials, J. Inequal. Appl., Art ID 86052, 22pp. 2007.
17. C.S. Ryoo, A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. vol 21, pp 47-54, 2011.
18. C.S. Ryoo, H.Y. Lee, N.S. Jung, Some identites on the (h, q)-Euler numbers with weight α and q-Bernstein polynomials, Applied Mathematical Sciences, Vol 5, no 69, 3429-3437, 2011.
H.Y. Lee is currently at Hannam Unuiversity since 2010. His reseach interests are polynomials in Z_{p} and it's identities.

Department of Mathematics, Hannam University, Daejeon 307-791, Korea.
e-mail: normaliz@hnu.kr
N.S. Jung is currently at Hannam Unuiversity since 2010. Her reseach interests are polynomials in Z_{p} and it's identities.
Department of Mathematics,Hannam University, Daejeon 307-791, Korea.
e-mail: jns4235@nate.com
J.Y. Kang is currently at Hannam Unuiversity since 2011. Her reseach interests are polynomials in Z_{p} and it's identities.
Department of Mathematics, Hannam University, Daejeon 307-791, Korea. e-mail: rkdwjddnr2002@yahoo.co.kr

[^0]: Received February 14, 2013. Revised April 6, 2013. Accepted April 11, 2013. ${ }^{*}$ Corresponding author. ${ }^{\dagger}$ This work was supported by the research grant of the Hannam University.
 (c) 2013 Korean SIGCAM and KSCAM.

