Bull. Korean Math. Soc. 29 (1992), No. 1, pp. 31-40

CONVERGENCE OF THE GENERALIZED
IMPLICIT EULER METHOD

DonGg WoN Yu

0. Introduction

We introduce the generalized Runge-Kutta methods with the expo-
nentially dominant order w in [3], and the convergence theorems of the
generalized explicit Euler method are derived in [4]. In this paper we
will study the convergence of the generalized implicit Euler method.

1. Preliminaries

Let us consider the initial value problem with the exponentially dom-
inant order w,

(1.1) y' = f(t,y), 0<t<T, y(0) = yo,

where y(t) € R™, f : R™*! — R™ and T can be any fixed, positive
constant, large or small. The exact solution y(t) of the problem (1.1)
can be approximated by the implicit Euler method (IE method)

(12) Yi+1 :yi+hf(ti+layi+l)a ¢ :0,1,...,TL—-1, Yo :y(O),

where nh = T, t; = ih and y; is an approximation obtained by the
method.

Using the exponentially dominant order w € R of the problem (1.1),
the IE method (1.2) can be generalized by the furction z(¢) = e™“!y(2)
in [2] as follows:

(13) Yit+1 — ewhyi + hg(ti'l'layH—])a Yo = y(o)a 1= 03 1, ven—1,

where
g(t,y) = f(t,y) —wy.
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This is called the generalized implicit Euler method (GIE method). If
the exponentially dominant order of the problem is zero, then the GIE
method reduces to the IE method.

The exact solution y(t) of the problem (1.1) can be represented by
the integral equation (see Lawson [2]):

h
(1.4) Mnﬂ)=€”{Mh%+A f“%ﬂr+th+nD®}-

Througout this paper, we assume the following:

ASSUMPTION. The initial value problem (1.1) has a unique solution
y(t) which has continuous derivatives through the second order on [0,T].
And the function f(t,y) satisfies an one-sided Lipschitz condition for
all y and for t € [0, T].

Under this ASSUMPTION and for the given exponentially dominant
order w of the problem (1.1), we can choose positive constants M, M
and real valued functions v, 7 such that

ly" (Il < M, 0<t<T,
lo®y(t) = 20y'(t) + " () <M, 0<t<T,
(fty) = ft,2),y —2) <v(®)lly -zl
(9(t,y) —g(t.2)y — 2) < o(t)lly ~z||*, (9(t) = v(t) — w).
where (-,-} is an inner product on R™ and | - || is the corresponding
norm. Also v and ¥ are piecewise continuous functions.

If the exponentially dominant order w is zero, then M and 7(t) reduce

to M and v(t) respectively.
For a further development, we need the following results.

LEMMA 1. (Greenspan & Casulli [1]) If nembers |E;|, 1 = 0, 1,2,
won — 1, satisfy
|Eiv1| < A|lEi|+ B, 1=0,1,2,..,n—1,
where A and B are nonnegative constants and A # 1, then
A -1
A-1

(1.5)

|Ei| < A'|Eo| + B, i=12 .n
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LEMMA 2. (Greenspan & Casulli [1]) For all number t such that
1+t >0, one has

0<(14+8)*<e™, a>0.
LEMMA 3. If A > 0, and 1 is a positive integer, then
AP -1 ;
< . I—l.
11 S 1A
LEMMA 4. If0 < A <1 and{ is a positive integer, then
At -1
A-1

LEMMA 5. If0<a< A, B>0, a# B, A# B and i is a positive
integer, then

<.

(B/A) —1 < (B/a)' — 1
B/A-1 — Bja—-1"

LEMMA 6. Under the above ASSUMPTION, there exists a number
€ € (0, k) such that

h
/ e Tg(t + 7T, y(ti + 7))dT = he ™" g(tiz, y(tis1))
0
2 .
- h?e—“’f {Wly(ti + €) — 2wy’ (t: + ) + y"'(t; + €)}.

&

Proof. Define
K(z)= / e " Tg(ti + T, y(t; + 7))dT.
0

Since g(t,y) = f(t,y) — wy and y’ = f(¢,y), we have
K'(z) = e {y(ti + ) — wy(ti + 2)},
K'(z) = e " {w’y(t; + ) — 2wy'(ti + 2) + "' (t: + 2)}.
From Taylor’s theorem, there is a number ¢ between z and h such that
K(z) = K(h) + (x — h)K'(h) + %(x N 3)

Put £ = 0. Then the proof is complete.
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2. Golbal Truncation Error Bound of the GIE Method

Let us denote global truncation errors by é;, i.e.
éi = y(ti) — v, 1=0,1,2,...,n.

From the equality (1.4) and Lemma 6, the global truncation error
bound of the GIE method (1.3) is derived for £ € (0, k) as follows:

Eirt = e+ h{g(tir1, y(tiz1)) — g(tiv1, yin1)}
h2
— eyt + ) — 2wy (8 + €) F (8 +6))

The square norm of €41 is

Heis1))® = (€"ei, 1) + (R{g(tivr, y(tig1)) — 9(tir 1, yig1) }s Gir)
h2 1 -
— (Tt + ) = 20y (6 + ) V(1 + O} ).

Using the inequality (1.5) and the Schwarz inequality, we have

. . . R ih—ey—
(1)l < e lé] + hollén + 5O, 0< €< h.

First for the positive one-sided Lipschitz constant  of the function
g(t,y), and h € (0,1/7), one has the following inequality from the
inequality (2.1)

h wh 2
e N € .. Mh
~{|é:]] + —e %
hi 1—ho 2

lléisa]l <

0< €< h.
< , 0<¢

Using Lemma 1, we have

; wh .
wh : £\ _ 1] wh _hZ
led < (16 ) o]l + (%) e —weM C0<E<h

y ewh _6
— hv 1 1 - hv 2
But, ¢y = 0, so that
wh . —
, )t ] ewh MHh2
(22) ol < TS T e ME
le»——hi/ —1 1- hl/ 2
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Now take a real number a which is greater than #. Then there is a
positive number hy such that

1
1— hyo = e—ah", 0< hy < —.
i

Since the inequality 1 — ho > ¢~*" holds for the step size h € (0, hp),
the following inequality is derived from (2.2) and Lemma 5

ih —
e(wa)z -1 e(u.z--l-oz)h(_i—u.rf Mh2

(Z("“’+")h -1 b

L

1
(2.3) &l < , O<£<h<hb<5,

Appling Lemma 3 and Lemma 4 to this inequality (2.3) we can easily
verify the following theorem.

THEOREM 1. Suppose that the one-sided Lipschitz constnant i of
the function ¢(t,y) is positive and « is a fixed number which is greater
then v.

(1) Ifw + a >0, then for a step size h € (0, hy) we have the global

truncation error bounds (1 = 1,2, ...,n) as follows:
TMh
lél < e<w+a>T—9—, ( when w > 0),
R rTMh
€] < e“rT, ( when w = 0),

TMh
2 b)

(i) Ifw+a <0, then for a step size h € (0, ky) we have the global
truncation error bounds (1 = 1,2,...,n) as follows:

€] < elota)l o —w/v ( when —a <w <0).

“ —w/p Tﬂh
[€:]] < ™" ——.
2
On the other hand, for the case of the nonpositive one-sided Lipschitz

constant ¥ of the function g(¢,y), the following inequality is easily de-
rived from the inequality (2.1)

AfL?
wih-g) MIZ

€1l < e“Mlés]| + € 0<€&<h.
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By Lemma 1, we have

1 Mh?
whe—wf

~ uh ~ i (e“Jh)i - h
lléill < e Ileo||+————ew,,~le 5 0<&<h,
but, éy = 0 implies
why? ATH2
-1 Mh
e < O =L on-ueMBE oy

ewh — 1 2

Appling Lemma 3 and Lemma 4 to the above inequality, we have

THEOREM 2. Suppose that the one-sided Lipschitz constant v of the
function g¢(t,y) is nonpositive. Then for all step size h < T, we have
the global truncation error bounds (i = 1,2, ..., n) as follows:

TM
i 56“7—];4-}—1, ( whenw > 0),
[[é:]] < _7:_];4_/1 ( when w = 0),
TMh .
l|é:]] < ——%/I—, ( whenw < 0.

Using the above two theorems, the following is immediate.

THEOREM 3. For any one-sided Lipschitz constant  of the function
9(t,y) the global truncation error bounds of the GIE method (1.3) tend
to zero as h — 0:

limllél =0, i=1,2,...n

3. Total Bound of the GIE Method

The numbers actually obtained by the GIE method (1.3) from a
computer will not be the y; but, say, some quantities u;. These numbers
satisfy an equation of the form

(8.1) wigr = e u; + hg(tisi,uipy) + riga(h), i=0,1,2,..,n—1,
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where 7i41(h) represents the local roundoff error introduced by the
inexact evaluation of the quantity

e“’hu,- + hg(tH.] y Uiyt )

If o denotes the initial roundoff error committed in evaluating yo, then
the initial condition for (3.1) becomes

up = y(0) + ro.
Now, let us consider the total errors F; which are defined by
Ei=y(t:) — uy, 1 =0,1,2,..,n,

between the exact solution y(¢,) and the actual numerical solution wu;.
Thus, Eq = ry. For some £ € (0,h) the total error bound of the GIE
method (1.3) is derived by the equality (1.4), (3.1) and Lemma 6 as
follows:

Eir1 = e”"Ei + h{g(tip1, y(tix1)) — g(tisr, uirr)}
h2

=TT 4 O = 2y (4 O+ (1 4 O i,

The squared norm of E;;; is
IEit1(l* = (" By, Bigr) + (h{g(tisr, y(ti41)) = g(tipr, wirn)}s Eigr)
h2
- <3e“’<"’f){w2y(t,— +8) = 2wyt + ) +y (4 + c>},Ei+1>

= (rit1, Eit1).

Assume also, for simplicity, that the computation is being done in such
a fashion that there is a positive number R which is equal to the abso-
lute value of the maximum possible roundoff error. Then by using the
inequality (1.5) and the Cauchy-Schwartz inequality we have

h? —
(3.2) ||Eiz1]| < e“M||Ei|| + hi||Eipr| + e UM+ R, 0<E<h
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First for the case of the positive one-sided Lipschitz constant o of
the function ¢(t,y) and h € (0,1/7) the following inequality is derived
from the inequality (3.2)

wh wh ATL2
Mh R
Bl + T

R 2 1—ho’
Using Lemma 1 we have
wh . —_—
€w (S —1 evt e MR? w
15 < (7 ) 1ol + 1= emse M | ooy,

wh —
T — 1 1~ hv

HEH“< 0<&<h.

Since the inequality 1—h» > e~** holds for a fixed step size h € (0, h),

the following inequality is derived from Lemma 5 (0 < é < h < hy < 1)
(w+a)lh -1 'M.h2

7 lwtadhyg—wd —wh
elwta)h _q {e 2 te R}.

If w+a >0, then by Lemma 3 we have
63)  IE] < o g e ZLa i}

And if w + o <0, then by Lemma 4 we have

IE:f| < el+ Rt Eo | +

4

, Mh? '
(3.4) |E:|| < ||Eoll +¢ {e"“’f—z- +e"“"R}.

From these inequalities (3.3) and (3.4) we can easily verify the following
theorem.

THEOREM 4. Suppose that the one-sided Lipschitz constant v of the
function g(t,vy) is positive and « is a fixed number which is greater than
U.

(i) Ifw+a >0, then for a step size h € (0, hy) we have the global

truncation error bounds (: = 1,2,...n) as follows:

Mh R
|E;|| < elwtoT [||Eo” +T {ij)“ + X}} , ( when w > 0),
Mh R
|Ei|| < e°T [)IEO"+T{ 5 +-h—}] , ( when w = 0),
| Eif) < eletelT [“EO” + Te™v/? {Mh + %}] , ( when —a <w <0).
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(i) Ifw 4 a < 0, then for a step size h € (0, hy) we have the global
truncation error bounds (¢ = 1,2,...,n) as follows:

Mh R
2 hf’

|mmsn&m+nﬂw{-+—

On the other hand, for the case of the nonpositive one-sided Lipschitz
constant v of the function ¢(t,y), the following inequality is easily de-
rived from the inequality (3.2).

| Eiv1]] < e“*||E: ||+ POM 4R, 0<E<h

By Lemma 1, we have for £ € (0, k)

wih 2
. et -1 —w Mk —w
Il < e 1 Boll + e h{ TR h}

Appling Lemma 3 and Lemma 4 to the above inequality, we can arrive
at

THEOREM 5. Suppose that the one-sided Lipschitz constant i of the
function g¢(t,y) is nonpositive. Then for all step size h < T, we have
the global truncation error bounds (1 = 1,2,...,n) as follows:

Mh R
120 < =" (12l + {2+ T Cbenr > 0),
Mh R
“EiHSHEU||+T{““—+—};}, ( when w = 0),
&3l < 11 Eoll +T{*Mh ]E}, ( when w < 0).
2 h
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