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A NOTE ON q-ANALOGUE OF POLY-EULER POLYNOMIALS

AND ARAKAWA-KANEKO TYPE ZETA FUNCTION
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Abstract. In this paper, we define a q-analogue of the poly-Euler numbers

and polynomials which is generalization of the poly Euler numbers and
polynomials including q-analogue of polylogarithm function. We also give

the relations between generalized poly-Euler polynomials. Furthermore, we
introduce zeta fuctions of Arakawa-Kaneko type and talk their properties

and the relation with q-analogue of poly-Euler polynomials.
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1. Introduction

Many mathematicians are interested in the Bernoulli numbers and polynomi-
als, Euler numbers and polynomials, Genocchi numbers and polynomials, tan-
gent numbers and polynomials and their applications. They possess many in-
teresting properties and are treated in many areas of mathematics and physics.
Due to these reasons, many applications of Euler numbers and polynomials,
Euler numbers and polynomials, Genocchi numbers and polynomials, tangent
numbers and polynomials have been studied, and recently various analogues for
the above numbers and polynomials was introduced (see [1-14]).

In this paper, we use the following notations. N = {1, 2, 3, . . . } denotes the
set of natural numbers, N0 = {0, 1, 2, . . . } denotes the set of nonnegative inte-
ger, Z denotes the set of integers, and C denotes the set of complex numbers,
respectively. The ordinary Euler polynomials En(x) are given by the generating
functions:

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
(see [1, 2, 6]).
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When x = 0, En = En(0) are called Euler numbers. The first few polynomials
are E0(x) = 1, E1(x) = x− 1

2 , E2(x) = x2 − x,E3(x) = x3 − 3
2x

2 + 1
4 .

Let x > 0. The Euler zeta function of Hurwitz type (see [15,16]) is define by

ζE(s, x) = 2

∞∑
n=0

(−1)n

(n+ x)s
(1)

for Re(s) > 0. This function is analytically continued to the whole complex s-
plane as an entire function. In fact, this follows from the fact that for λ ∈ R\Z,
the lerch zeta function

L(λ, x, s) =

∞∑
n=0

e2πiλn

(n+ x)s
, Re(s) > 0

is analytically continued to the whole complex splane as an entire function (see
[13, 2.2). It is known that for each non-negative integer n, ζE(−n, x) = En(x).

The polylogarithm function Lik is defined by

Lik(x) =

∞∑
n=1

xn

nk
(2)

for k ∈ Z (see [1,2,3,6,7,8,14,15]).
By using polylogarithm function, Kaneko [6] defined a sequence of rational

numbers, which is refered to as poly-Bernoulli numbers.
In [3, 13], the k-th q-analogue of polylogarithm function Lik,q is introduced

by

Lik,q(x) =

∞∑
n=1

xn

[n]kq
, (k ∈ Z), (3)

where [n]q = 1−qn
1−q .

The q-analogue of polylogarithm function for k < 1 is represented by a rational
function,

Lik,q(x) =
1

(1− q)k
k∑
l=0

(−1)l
(
k

l

)
qlx

1− qlx
. (4)

For k < 1, the polylogarithm functions are as follows:

Li0,q(x) =
x

1− x
,

Li−1,q(x) =
x

(1− x)(1− qx)
,

Li−2,q(x) =
x(1 + qx)

(1− x)(1− qx)(1− q2x)
,

Li−3,q(x) =
x(1 + 2xq + 2xq2 + x2q3)

(1− x)(1− qx)(1− q2x)(1− q3x)
,

Li−4,q(x) =
x(1 + 3xq + 5xq2 + 3x(1 + x)q3 + 5x2q4 + 3x2q5 + x3q6)

(1− x)(1− qx)(1− q2x)(1− q3x)(1− q4x)
.
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Note that lim
q→1

[n]q = n and lim
q→1

Lik,q(x) = Lik(x).

In this paper, we consider a q-analogue of the poly-Euler polynomials contain-
ing Equation (4). We also find some relations between a q-analogue of poly-Euler
polynomials and ordinary Euler polynomials.

2. A relation with q-analogue of ploy-Bernoulli polynomials

2.1. A q-analogue of the poly-Euler polynomials.

In this section, we define a q-analogue of poly-Euler numbers E
(k)
n,q and

polynomials E
(k)
n,q(x) by the generating functions. From the definition, we get

some identities that is similar to the ordinary Euler polynomials.

Definition 2.1. For n ≥ 0, n, k ∈ Z and 0 < q < 1, we introduce a q-analogue
of poly-Euler polynomials by:

2Lik,q(1− e−t)
t(et + 1)

ext =

∞∑
n=0

E(k)
n,q(x)

tn

n!
. (5)

When x = 0, E
(k)
n,q = E

(k)
n,q(0) are called a q-analogue of poly-Euler numbers.

Note that lim
q→1

[n]q = n and lim
q→1

E
(k)
n,q(x) = E

(k)
n (x).

Theorem 2.2. For n ≥ 0, n, k ∈ Z and 0 < q < 1, we have

E(k)
n,q(x) =

n∑
l=0

(
n

l

)
E

(k)
l,q x

n−l. (6)

Proof. Let n ≥ 0, n, k ∈ Z and 0 < q < 1. We easily get

∞∑
n=0

E(k)
n,q(x)

tn

n!
=

2Lik,q(1− e−t)
t(et + 1)

ext

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
E

(k)
l,q x

n−l

)
tn

n!
.

Therefore, we have

E(k)
n,q(x) =

n∑
l=0

(
n

l

)
E

(k)
l,q x

n−l.

�

Theorem 2.3. For n ≥ 0, n, k ∈ Z and 0 < q < 1, we have

E(k)
n,q(x+ y) =

n∑
l=0

(
n

l

)
E

(k)
l,q (x)yn−l. (7)
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Proof. Let n ≥ 0 and n, k ∈ Z. Then we obtain

∞∑
n=0

E(k)
n,q(x+ y)

tn

n!
=

2Lik,q(1− e−t)
t(et + 1)

e(x+y)t

=
2Lik,q(1− e−t)

t(et + 1)
exteyt

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
E

(k)
l,q (x)yn−l

)
tn

n!
.

Thus, we get

E(k)
n,q(x+ y) =

n∑
l=0

(
n

l

)
E

(k)
l,q (x)yn−l.

�

Theorem 2.4. For n ≥ 0, n, k ∈ Z and 0 < q < 1, we have

d

dx
E

(k)
n+1,q(x) = (n+ 1)E(k)

n,q(x). (8)

Proof. Let n ≥ 0 and n, k ∈ Z. Then we obtain

d

dx
E

(k)
n+1,q(x) =

d

dx

(
n+1∑
l=1

(
n+ 1

l

)
E

(k)
l,q x

n−l+1

)

=

n∑
l=0

(n+ 1)

(
n

l

)
E

(k)
l,q x

n−l

= (n+ 1)E(k)
n,q(x).

�

By using the definition of the q-analogue of polylogarithm function Lik,q(x)
in Equation (4), we have next relation which is connected with the ordinary
poly-Euler polynomials.

Theorem 2.5. Let n ≥ 0, n, k ∈ Z and 0 < q < 1. We obtain

E(k)
n,q(x) =

1

n+ 1

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(−1)a
(
l + 1

a

)
En+1,q(x− a). (9)

Proof. For n ≥ 0, n, k ∈ Z and 0 < q < 1,

∞∑
n=0

E(k)
n,q(x)

tn

n!
=

2Lik,q(1− e−t)
t(et + 1)

ext

=

∞∑
l=1

(1− e−t)l

[l]kq

ext

t(et + 1)
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=

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)a

∞∑
n=−1

1

n+ 1
En+1,q(x− a)

tn

n!

=

∞∑
n=0

(
1

n+ 1

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(−1)a
(
l + 1

a

)
En+1,q(x− a)

)
tn

n!
.

Comparing the coefficient of the result, we easily get next equation:

E(k)
n,q(x) =

1

n+ 1

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(−1)a
(
l + 1

a

)
En+1,q(x− a).

�

2.2. A relation with q-analogue of ploy-Bernoulli polynomials.

We briefly review a q-analogue of poly-Bernoulli polynomials ans numbers (see
[9,12]). The q-analogue of exponential function is defined by

eq(t) =

∞∑
n=0

tn

[n]q!
.

In [10], the q-analogue of Bernoulli polynomials are defined by the generating
function to be

t

eq(t)− 1
eq(xt) =

∞∑
n=0

Bn,q(x)
tn

[n]q!
.

Let k denote a fixed integer. A q-analogue of poly-Bernoulli polynomials

B
(k)
n,q(x) (n = 0, 1, 2, · · · ) are defined by the generating function

Lik,q(1− e−t)
et − 1

ext =

∞∑
n=0

B(k)
n,q(x)

tn

n!
.

Moreover, we call B
(k)
n,q = B

(k)
n,q(0) (n = 0, 1, 2, · · · ) a q-analogue of poly-

Bernoulli numbers. If k = 1, then

(−1)nB(1)
n,q(−x) = Bn,q(x) (n ≥ 0).

The following result yields a relation among q-analogue of poly-Bernoulli and
ploy-Euler polynomials.

Theorem 2.6. For k ∈ Z and n ≥ 1, we have

nE
(k)
n−1,q(x) + nE

(k)
n−1,q(x+ 1) = 2B(k)

n,q(x+ 1)− 2B(k)
n,q(x). (10)

Proof. We compute both sides of

2Lik,q(1− e−t)
t(1 + et)

ext(1 + et)t =
2Lik,q(1− e−t)

et − 1
ext(et − 1).
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The left-hand side is

2Lik,q(1− e−t)
t(1 + et)

ext(1 + et)t

=
2Lik,q(1− e−t)

t(1 + et)
extt+

2Lik,q(1− e−t)
t(1 + et)

e(x+1)tt

= t

∞∑
n=0

E(k)
n,q(x)

tn

n!
+ t

∞∑
n=0

E(k)
n,q(x+ 1)

tn

n!

=

∞∑
n=1

(
nE

(k)
n−1,q(x) + nE

(k)
n−1,q(x+ 1)

) tn
n!

the right-hand side is

2Lik,q(1− e−t)
et − 1

ext(et − 1)

=
2Lik,q(1− e−t)

et − 1
e(x+1)t − 2Lik,q(1− e−t)

et − 1
ext

=

∞∑
n=0

(
2B(k)

n,q(x+ 1)− 2B(k)
n,q(x)

) tn
n!
.

Therefore, we get Theorem 2.6. �

3. A relation with q-analogue of the Arakawa-Kaneko type zeta
functions ZE,k,q(s, x)

3.1. A q-analogue of Arakawa-Kaneko type zeta functions.

Definition 3.1. For Re(s) > 0, x > 0 and k ∈ Z, set

ZE,k,q(s, x) =
2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
et + 1

e−xtts−2dt, (11)

the Laplace-Mellin integral. We call it the Arakawa-Kaneko type zeta function
for q-analogue of poly-Euler polynomials.

Theorem 3.2. A q-analogue of the zeta function ZE,k,q(s, x) is defined for
Re(s) > 0 and x > 0 if k ≥ 1, and for Re(s) > 0 and x > 0 if k ≤ 0.

Proof. We can prove the convergence of the defined function as follows.
(i) k ≥ 1: for t ≥ 0, we have

Lik,q(1− e−t)
et + 1

e−xtts−2 ≤ Lik,q(1− e−t)e−xtts−2

≤ et − 1

et + 1
e−xtts−2
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≤ e−xtts−1.

(ii) k = 0: for t ≥ 0, we have

Lik,q(1− e−t)
et + 1

e−xtts−2 =
et − 1

et + 1
e−xtts−2

≤ e−xtts−1.

(iii) k < 0: for t ≥ 0, using the equation (4), we have

Lik,q(1− e−t)
et + 1

e−xtts−2

=
1

(1− q)|k|

|k|∑
l=0

(−1)l
(
|k|
l

)
ql(1− e−t)

(1 + et)(1− ql(1− e−t))
e−xtts−2

=
1

(1− q)|k|
et − 1

et + 1
e−xtts−2

+
1

(1− q)|k|

|k|∑
l=1

(−1)l
(
|k|
l

)
ql(1− e−t)

(1 + et)(1− ql(1− e−t))
e−xtts−2

≤ 1

(1− q)|k|
et − 1

et + 1
e−xtts−2

+
|k|!

(1− q)|k|

|k|∑
l=1

(−1)l
ql(1− e−t)

(1 + et)(1− ql(1− e−t))
e−xtts−2

≤ 1

(1− q)|k|
e−xtts−1 +

|k|!
(1− q)|k|

|k|∑
l=1

(−1)lql

1− ql
e−xtts−2since

|k|∑
l=1

(−1)lql

1− ql
< 0


≤ 1

(1− q)|k|
e−xtts−1.

We can guarantee the convergence of the function ZE,k,q(s, x) by dividing it
into the above three and proving it. �

3.2. A relation with the Arakawa-Kaneko type zeta functions ZE,k,q(s, x).

We review the zeta function investigated in [2]. For k ∈ Z, we set

ZB,k(s, x) =
1

Γ(s)

∫ ∞
0

Lik(1− e−t)
1− e−t

e−xtts−1dt,
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the Laplace-Mellin integral. It is defined for Re(s) > 0 and x > 0 if k ≥ 1, and
for Re(s) > 0 and x > |k|+1 if k ≤ 0. The function s 7−→ ZB,k(s, x) has analytic
continuation to an entire function on the whole complex s-plane and

ZB,k(−n, x) = (−1)nB(k)
n (−x)

holds for n ≥ 0, x > 0.

Definition 3.3. For Re(s) > 0, x > 0 and k ∈ Z, we define

ZB,k,q(s, x) =
1

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1− e−t

e−xtts−1dt.

There is a relation between ZE,k,q(s, x) and ZB,k,q(s, x).

Theorem 3.4. For k ∈ Z, we have

ZE,k,q(s+ 1, x) + ZE,k,q(s+ 1, x− 1) = 2ZB,k,q(s, x)− 2ZB,k,q(s, x+ 1). (12)

Proof. We compute both sides of

2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
t(1 + et)

t(1 + et)e−xtts−1dt

=
2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1− e−t

(1− e−t)e−xtts−1dt.

The left-hand side is

2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
t(1 + et)

t(1 + et)e−xtts−1dt

=
2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1 + et

e−xtt(s+1)−2dt

+
2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1 + et

e−(x−1)tt(s+1)−2dt

= ZE,k,q(s+ 1, x) + ZE,k,q(s+ 1, x− 1)

the right-hand side is

2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1− e−t

(1− e−t)e−xtts−1dt

=
2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1− e−t

e−xtts−1dt

− 2

Γ(s)

∫ ∞
0

Lik,q(1− e−t)
1− e−t

e−(x+1)tts−1dt

= 2ZB,k,q(s, x)− 2ZB,k,q(s, x+ 1)

from which we deduce the result. �



A note on q-analogue of poly-Euler polynomials and Arakawa-Kaneko type zeta function 619

4. Generalized q-analogue of poly-Euler polynomials and
Arakawa-Kaneko type L-Functions

4.1. Generalized q-analogue of poly-Euler polynomials.

Let f be a positive integer and χ the Dirichlet character with conductor
f = fχ. As is well-known, generalized Euler polynomials are defined by the
generating function

2

f−1∑
a=0

(−1)aχ(a)
eat

eft + 1
ext =

∞∑
n=0

En,χ(x)
tn

n!
.

Definition 4.1. Let k ∈ Z. We define generalized a q-analogue of poly-Euler

polynomials E
(k)
n,χ,q(x) (n = 0, 1, 2, · · · ) by

2

f

f−1∑
a=0

(−1)aχ(a)
Lik,q(1− e−ft)
t(eft + 1)

e(x+a)t =

∞∑
n=0

E(k)
n,χ,q(x)

tn

n!
. (13)

We call E
(k)
n,χ,q = E

(k)
n,χ,q(0) (n = 0, 1, 2, · · · ) generalized a q-analogue of poly-

Euler numbers.

One can easily prove the following three theorems as in a q-analogue of poly-
Euler polynomial case.

Theorem 4.2. (Addition formula). For k ∈ Z and n ≥ 0, we obtain

E(k)
n,χ,q(x+ y) =

n∑
m=0

(
n

m

)
E(k)
m,χ,q(x)yn−m.

Proof. We calculate

E(k)
n,χ,q(x+ y) =

2

f

f−1∑
a=0

(−1)aχ(a)
Lik,q(1− e−ft)
t(eft + 1)

e(x+y+a)t

=
2

f

f−1∑
a=0

(−1)aχ(a)
Lik,q(1− e−ft)
t(eft + 1)

e(x+a)teyt

=

∞∑
n=0

E(k)
n,χ,q(x)

tn

n!

∞∑
n=0

yn
tn

n!

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
E(k)
m,χ,q(x)yn−m

)
tn

n!
.

�

Lemma 4.3. For k ∈ Z and n ≥ 0, we have

E(k)
n,χ,q(x) =

n∑
m=0

(
n

m

)
E(k)
m,χ,qx

n−m.
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Proof. We calculate

∞∑
n=0

E(k)
n,χ,q(x)

tn

n!
=

2

f

f−1∑
a=0

(−1)aχ(a)
Lik,q(1− e−ft)
t(eft + 1)

e(x+a)t

=
2

f

f−1∑
a=0

(−1)aχ(a)
Lik,q(1− e−ft)
t(eft + 1)

eatext

=

∞∑
n=0

E(k)
n,χ,q

tn

n!

∞∑
n=0

xn
tn

n!

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
E(k)
m,χ,qx

n−m

)
tn

n!
.

�

Theorem 4.4. (Appell sequence) For k ∈ Z and n ≥ 0, we have

d

dx
E

(k)
n+1,χ,q(x) = (n+ 1)E(k)

n,χ,q(x).

Proof. Since Lemma 4.3, we have

d

dx
E

(k)
n+1,χ,q(x) =

d

dx

n+1∑
m=0

(
n

m

)
E(k)
m,χ,qx

n−m+1

=

n∑
m=0

(n+ 1)

(
n

m

)
E(k)
m,χ,qx

n−m

= (n+ 1)E(k)
n,χ,q(x).

�

Theorem 4.5. For any n ≥ 0, we have

E(k)
n,χ,q(x) = fn

f−1∑
a=0

(−1)aχ(a)E(k)
n,q

(
x+ a

f

)
,

E(k)
n,χ,q = fn

d−1∑
a=0

(−1)aχ(a)E(k)
n,q

(
a

f

)
.

Proof. To begin with, let us prove that first identity. We make use of the gen-

erating function for E
(k)
n,χ,q(x). We calculate

∞∑
n=0

fn
f−1∑
a=0

(−1)aχ(a)E(k)
n,q

(
x+ a

f

)
tn

n!

=

f−1∑
a=0

(−1)aχ(a)

∞∑
n=0

E(k)
n,q

(
x+ a

f

)
(ft)n

n!
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=

f−1∑
a=0

(−1)aχ(a)
2Lik,q(1− e−ft)

ft(et + 1)
e(

x+a
f )ft

=
2

f

f−1∑
a=0

(−1)aχ(a)
Lik,q(1− e−ft)

t(et + 1)
e(x+a)t

=

∞∑
n=0

E(k)
n,χ,q(x)

tn

n!
,

which yields the generating function for E
(k)
n,χ,q(x). The second identity comes

from the first identity for x = 0. �

Theorem 4.6. For k ∈ Z and n ≥ 0, we have

E(k)
n,χ,q(x)

=
fn

n+ 1

f−1∑
a=0

(−1)aχ(a)

∞∑
m=0

1

[m+ 1]kq

m+1∑
j=0

(−1)j
(
m+ 1

j

)
En+1,q

(
x+ a− fj

f

)
.

Proof. From Theorem 2.5 and 4.5, we have

E(k)
n,χ,q(x)

= fn
f−1∑
a=0

(−1)aχ(a)E(k)
n,q

(
x+ a

f

)

= fn
f−1∑
a=0

(−1)aχ(a)
1

n+ 1

∞∑
m=0

1

[m+ 1]kq

×
m+1∑
j=0

(−1)j
(
m+ 1

j

)
En+1,q

(
x+ a− fj

f

)

=
fn

n+ 1

f−1∑
a=0

(−1)aχ(a)

∞∑
m=0

1

[m+ 1]kq

m+1∑
j=0

(−1)j
(
m+ 1

j

)
En+1,q

(
x+ a− fj

f

)
.

�

4.2. A q-analogue of the Arakawa-Kaneko type L-Functions.

Definition 4.7. For k ∈ Z, define the L-series attached to χ by the Laplace-
Mellin integral

LE,k,q(s, x, χ) =
2

f

f−1∑
a=0

(−1)aχ(a)
1

Γ(s)

∫ ∞
0

Lik,q(1− e−ft)
t(eft + 1)

e−(x−a)tts−1dt.

It is defined for Re(s) > 1 and x > f − 1 if k ≥ 1, and for Re(s) > 1 and
x > f − 1 if k ≤ 0. We call LE,k,q(s, x, χ) a q-analogue of the Arakawa Kaneko
type L-Function.
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Theorem 4.8. One has

LE,k,q(s, x, χ) = f−s
f−1∑
a=0

(−1)aχ(a)ZE,k,q

(
s,
x− a
f

)
.

Proof. The identity is proves by

LE,k,q(s, x, χ)

=
2

f

f−1∑
a=0

(−1)aχ(a)
1

Γ(s)

∫ ∞
0

Lik,q(1− e−ft)
t(eft + 1)

e−(x−a)tts−1dt

=

f−1∑
a=0

(−1)aχ(a)
2

Γ(s)

∫ ∞
0

Lik,q(1− e−ft)
ft(eft + 1)

e−(
x−a
f )ftts−1dt

(put u = dt)

=

f−1∑
a=0

(−1)aχ(a)
1

fs
2

Γ(s)

∫ ∞
0

Lik,q(1− e−u)

u(eu + 1)
e−(

x−a
d )uus−1dt

= f−s
f−1∑
a=0

(−1)aχ(a)ZE,k,q

(
s,
x− a
f

)
.

�
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