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THE SCHRODINGER EQUATION FOR AN EULER
OPERATOR ON FOCK SPACES*

HonG RAE CHO

ABSTRACT. We consider the initial value problem of the Schrédinger equa-
tion for an Euler operator R on C™ that is an analogue of the harmonic
oscillator in R™. We get some regularity results of the Schrédinger equa-
tion on Fock spaces.

1. Introduction

Let H be the most basic Schrédinger operator in R™,n > 1, the Hermite
operator (or the harmonic oscillator):

H=—-A+|z]%
Then the Schrédinger equation for H can be written by

This is an important model in quantum mechanics (see for example [4] and
[6]). In [6], Nandakumarana and Ratnakumar considered the regularity of the
following initial value problem for the Schrodinger equation for H:

(1) (i0p —H)u =0 on R”x (0,00)
u(-,0) =f on R".
Let C™ be the complex n-space. If z = (21, -+, 2,) and w = (wy,- -+ ,wy)
are points in C", we write

n
w=Y zwj, o] =(29)"
j=1
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There is an interesting operator R on C™, given by

- 0
Jj=1

This R is an Euler operator.
The Bargmann transform B is defined by
1 1 1
Bf(z) = er® f(ac)e_f(z_g”)2 dz,
’/Tn/4 R™
where dz is the volume measure on R", 22 = z -z, and 22 = z - 2. We know
that

BH =RB on L*R").

By this relation, the Bargmann transform B maps the initial value problem (1)
to the equivalent form:

(10 —R)u =0 on C"x(0,00)
u(-,0) =f on C"

Let dV be the ordinary volume measure on C™. For any 0 < p < oo we let
L?,(C™) denote the space of Lebesgue measurable functions f on C™ such that

the function f(z)e_i"ﬂ2 is in LP(C™,dV). When 0 < p < o0, it is clear that
L2(C") = L (c",e—%\z\2 dV(z)) .
1

1flles, = [(41;)" [ et

For p = oo the norm in L (C") is defined by

I flle = esssup {|f (e 1" 2 e}

Let FP(C™) denote the space of entire functions in L% (C™). If 0 < p < ¢, then
FP C F4, and the inclusion is proper and continuous (see [9]). Note that F? is
a closed subspace of the Hilbert space LZ, with inner product

1 / — 1,2
f(2)g(z)e 21 av (2).
2m)™ Jen
In this paper, we consider the regularity of the regularized problem
(i0p —R)u =0 on C"™x(0,00)
u(-,0) =e ™f on Cn

2)

We define

2

! dV(z)] g

<fa g>F2 =

3)

Theorem 1.1. Let r > 0. Then u,(z,t) = e~ "HNIR f(2) is the solution of the
reqularized problem (3) satisfying the inequality

sup [[ur (-, )| e < (| fll 7o
teR
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wherelgp’§2,2§p§ooand%qLi:l.

2. Hermite operator and Euler operator
2.1. Hermite operator
The Hermite operator
H=—-A+|z?

is self-adjoint on the set of infinitely differentiable functions with compact sup-
port C°(R™), and it can be factorized as

where

¢ 0 )
+x; and aj——%Jﬂ—zj, 1<j<n.

aj; =

a1,
In one dimension, the Hermite polynomials Hy are defined by
> dF 2
Hy(x) = (—1)%e” e (efx ) , zeR,
and by normalization we obtain the Hermite functions,
hi(z) = #%e‘élek(x), z eR.

Let Ng = N U {0} be the set of nonnegative integer. In higher dimensions,
for each multi-index I = (Iy,---,I,) € Nj, the Hermite polynomials H; are
defined by

Hi(z) = [[ Hi,(2)), == (x1,-- ,2,) €R"
j=1

and the Hermite functions h; are defined by

=

hi(x) = | | b1, (x5)
j=1
11 e - §
:7'['"/4 2”'['6 2 HI(I)7 ‘T*(Ila"'axn)ER .

Then {h; : I € N3} is an orthonormal basis for L?(R™).
Lemma 2.1 ([9)).
Hh] = (2|I| + n)h[
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Let H be the space of finite linear combinations of Hermite functions,
f= Z (fshr)L2@nyhr,
[I|<N
where
(fihr)r2@ny = | f(2)hi(z)dz.
R"L

The space H is dense in L?(R™), and so, by the orthonormality of the Hermite
functions,

1/2
£l 22 ®ny) = Z [(f, hr)p2ee |
TeNg
Let S(R™) be the Schwartz class of rapidly decreasing C°°(R"™) functions. For
f € S(R™), the Hermite series expansion
> A hn) e @myha
IeNg

converges to f uniformly in R™ (and also in L*(R™)), since ||hz||pe@n) < C,
for all I € Nj}, and for each m € N, we have (see [8])

[(f, hr) L2y | < [H™ fllL2@ny (21| +n) 7™

The spectral decomposition of H on R" is given by

Hf =" (2] +n){f, hr)r2@nhi.

IeNy

2.2. Euler operator

The Euler operator R can be written by

n

1 * *
R = 52 (A A + AT A;)),
j=1
where 5

Both A; and A7, as defined above, are densely defined linear operators on F?
(unbounded though).

Remark 1. Let

e k

f(z):Z % 4

V2 (k- )VED
Then f € F? but Rf ¢ F?2.
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The remark above tells us that Dom(R) € F2. Thus R is an unbounded
operator on F2. Moreover, we know that R is a positive, self-adjoint operator
on Dom(R).

For f € F? let

fz) =Y crer(?)
1eNg

be the orthonormal decomposition of f. Since R has the discrete spectrum
o(R)={2|I|+n:IeNj}, Rf is given by

Rf(z) =Y Q2| +n)erer(z), f € Dom(R).

IENy

2.3. Bargmann transform
It is well-known that the Bargmann transform B is a unitary isomorphism
between L?(R™) and F2(C") ([1], [9]).
Lemma 2.2 ([9]). For each j =1,...,n, we have
B(a;f) = A;B(f)
B(a} f) = A;B(f).
Lemma 2.3 ([9]). Let

P

6[(2) = T\Il_n'

Then {er : I € N&'} is an orthonormal basis for F? and B(hr) = ej.

Corollary 2.4. We have
BH = RB.

Proof. For f € S(R™) we have
Hf = Z | +n)(f, hr)L2@®n)hr
IeNy

and so

BHFf) = > Q|+ n){f, hi)r2@mer.

TeNy
Since B is a unitary isomorphism, we have (f, hr)p2®ny = (B(f),er)p2, hence
BH[) = Q| +n)(B(f),er)r= er = RB(f).
IeNy

Thus we get the result. U
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3. Regularized Schrodinger equation
3.1. Euler semigroup

We know that {e; : I € N7} is an orthonormal basis for F2. For f € F? let
f(z) =Y crer(z)
IeNy

be the orthonormal decomposition of f. Associated with the operator R is a
semigroup {B;};>o defined by the expansion

Bif(z) =Y e "M e (z),
TeNg

It is easy to see that B;f(2) — f(z) in F? as t — 07 by the dominated
convergence theorem since |e~*lel+™t _ 1| < 2. We know that {B;};>0 is a
strongly continuous semigroup. Moreover, —¢R is the infinitesimal generator of
{Bt}i>o0-

Proposition 3.1. —iR is the infinitesimal generator of {B}i>0. That is,

lim Bif—f = —iRf
t—0+ t
for f € Dom(R).
Proof. Let f € Dom(R). Then we have
Bif(z) = f(2) , A T
— - (—iRf(2)) = Z ” +i(2lI| +n) ) crer(2).
IeNp
We note that
e—i(2|]|+n)t -1 .
———— TiCl+n)lerller(2)] < 22| +n)lerller(2)]

for small ¢t > 0. Since

2> @I+ n)lerller(2)] < oo,
IeNy

by the dominated convergence theorem, we have

t—0+ t

i@+t _
lim ( +i(2I| + n)> crer(2)
IeNg

e—i(2|]\+n)t -1
= lim (t +i(2I| + n)) crer(z) = 0.

Hence
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Since B, f and R f belong to F2, by the dominated convergence theorem again,
we have

2
tl—i>%1+ % — (ZiRS) P2 =0
Thus we get the result. O
Thus, we have (see [3])
B, = ¢ iR

and so u(z,t) = e~ is the solution of the initial value problem:
(10 —R)u =0 on C" x (0,00)
u(+,0) =f on C".

—itR

Proposition 3.2. The operator e is unitary in F2. Hence Dom(e” %) =

F? and (e=R)~1 = itR,

Proof. For f € F?, we have a holomorphic expansion of f(z) = > caea(2).
Then

u(z,t) = e_imf(z)

— e—int Z 6_2it‘a|0a€a(2’).
a

So we have
[u(-, )5 = (ul(- 1), u(-,t))

— <e7,nt E 672215\0400(60(7 e~ int E 627,t|ﬁ|cﬁe,8>
o F2

5
= catge =100 e, eg) po

a,B
= 3" leal® = £
«

3.2. The kernel associated to the Euler semigroup

It is well-known ([1], [9]) that for f € F? we have the reproducing formula
such that
1

1,2
1) = e L, H0E e H avw),
where K (z,w) is the reproducing kernel defined by

K(z,w) = Ze;(z)m.
I
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In fact, we know that
K(z,w) =e2*",
By the spectral theory,
u(z,t) = e "R f(z)

— o—itR ((Qi)" /” f(w)zef(z)fH(We—édeV(w))

I

_ iR (Z eI(z)> (2710” . Flw)es(w)e 2’ qv(w)

1

Z (21 4n) | )(2

7 71—)“ Ccn
Ze t2HHn) e Z)el(w)efé‘deV(w)
o o ,
1
- (27‘(’)”
Interchanging the order of summation and integration is justified by the domi-
nated convergence theorem since

Slex [ 1wlerteile i av () < 3 il

and the power series on the right side of the 1nequahty above is convergent for
every z € C™.
Note that

Fw)Ky(z,w)e ™ qv (w).

w) = Z e I e (2)er (w)

7zntz 72zt|I|Z w'
21111

=e " exp |:2€_21t2 . w] .

Hence Kiio:(z,w) = K¢(z,w) and

1 .
|Kt(z,w)| = exp {Re <262”z . ’LI)):|
<exp (50l

Sexp | gle-wf ).

3.3. Regularity of the regularized Schrodinger equation

By using Gross’s logarithmic Sobolev inequality [5], Carlen proved the hy-
percontractivity inequality:
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Lemma 3.3 ([2]). Let f € H(C™). Letr >0 and 0 < p < q < co. Then
T < T
Az, < 11717 e,
and the estimate s sharp.

Proposition 3.4. Let 0 < p < oo and r > 0. Then e~" is contraction on FP.

Proof. Let f € FP. Then
n/ e*TRf(z)efilzlzlp dV (z)
Cn

e £11%
n
e*’!”ﬂp
/n

/ |f(w)[Pe 5w F e gy ()
(Cn

4r\
<
- ( 47 ) /n
4r
= H|f|SHieTée47"
where s = e~*". By Lemma 3.3, we have

4r 4r
It e < eI

1 2

fle2re i

Tavi(z)

/N /N
= 5= =
— —

<

/

e
R 5

pe4r

fw)pemser

dV(w)

Hence
4ar
e FllGw < I1F1°))7e
LG

By Jensen’s inequality, we have
4r
pe'” p\" P B2 ‘
el = (&) [ e e it ave)

(2)" [ r@re i av)

le™™ fllre < 1 £llFe-

IN

Therefore

Now, we consider the regularity of the regularized problem

(10 —R)u =0 on C"x(0,00)
u(+,0) =e ™Rf on Cn
Let

F(2) =3 fil2),
k=0
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where

Then the solution in this case is given by

ur(z,t) — e_itRe_TRf(Z) — Ze_(T—Ht)(QkJrn)fk(Z)-
k=0
Let ( =r+it,r > 0,t € R. Then

up(z,t) = e e Rf(2)

=e R 1 w er(2)er(w)e 2wl w
<<2w)”/cnf< S erterertale i av( >>

- (271T)" @) e e e (w)e T av (w)
' I
- (271)" cn (w) K¢ (z,w)e™ 1 dv (w),
where
(4) Ke(zw) = 3 e=Cm $™ ¢ (e (w)
k=0 |I|=k

which is the kernel associated to the semigroup e <™. Clearly, the semigroup
e R is also periodic in t with period 2.

Lemma 3.5. Let ( =r+it, r > 0,0 < [t| < 7. Then
|[K¢(z,w)| < e ™ exp Bquz . w|] .
Proof. The above series can be re-written as
Ke(z,w) = e "0+ oxp Be_%z . w] .

Hence

|K¢(z,w)] =e " exp [;Re(ezcz . m)}

1 .
=e "exp [QBQTRe(eMz : w)] .
U

Theorem 3.6. Let r > 0. Then u,(z,t) = e~ "HNR f(2) is the solution of the
reqularized problem (3) satisfying the inequality

sup [[ur (-, )| e < (| fll 7o
teR
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where 1 <p' <2,2<p<o0 and%qLi:l.
Proof. Let ¢ = r +it. We note that

\Kc(z,w)|e_%|w|2—i|zl2 <e exp [;e—wRe(e—QitZ . w)] e—§|w|2_i|z|2

<e"exp [26_2% : wl} e~ 3wl =327
— e ez Tz —glwl— |z
and
gl = 3P+ gl < =gl = gl Slellel < gl
Hence
[t (-, 8) || poe = sup |ur(z,t)‘e—%\2\z
zeCn
1 _1 2_ 11,2
= @y [/c F@) || K (=, w)le™ 31 1 dV(w)}
z n n

<t | [ 1@l R av )| < il

On the other hand, for f € F?, we have
up(z,t) = e R (e_TRf) (2).
By Proposition 3.2 and Proposition 3.4, we have
lr (- 0) [z = e (e f) 32
= e ™ fl| %
< I£ 1l

Hence by Riesz-Thorin interpolation theorem [7], for p € [1, 2] we have

sup [[uy (-, )| e < ([ fll por
teR
Where1§p’§2,2§p§ooand%+i=l. O
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