• 제목/요약/키워드: Euler Equation

검색결과 447건 처리시간 0.023초

GLOBAL EXISTENCE AND STABILITY FOR EULER-BERNOULLI BEAM EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Park, Jong-Yeoul;Kim, Joung-Ae
    • 대한수학회지
    • /
    • 제42권6호
    • /
    • pp.1137-1152
    • /
    • 2005
  • In this article we prove the existence of the solution to the mixed problem for Euler-Bernoulli beam equation with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We proved that the energy decay with the same rate of decay of the relaxation function, that is, the energy decays exponentially when the relaxation function decay exponentially and polynomially when the relaxation function decay polynomially.

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

  • CHO, HONG RAE;LEE, HAN-WOOL;CHO, EUNSUNG
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2019
  • We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.

Some Identities Involving Euler Polynomials Arising from a Non-linear Differential Equation

  • Rim, Seog-Hoon;Jeong, Joohee;Park, Jin-Woo
    • Kyungpook Mathematical Journal
    • /
    • 제53권4호
    • /
    • pp.553-563
    • /
    • 2013
  • We derive a family of non-linear differential equations from the generating functions of the Euler polynomials and study the solutions of these differential equations. Then we give some new and interesting identities and formulas for the Euler polynomials of higher order by using our non-linear differential equations.

미분방정식 mẍ + kx = f(t)의 역사적 유도배경 (Historical Background for Derivation of the Differential Equation mẍ+kx = f(t))

  • 박보용
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.315-324
    • /
    • 2011
  • This paper presents a historical study on the derivation of the differential equation of motion for the single-degree-of-freedom m-k system with the harmonic excitation. It was Euler for the first time in the history of vibration theory who tackled the equation of motion for that system analytically, then gave the solution of the free vibration and described the resonance phenomena of the forced vibration in his famous paper E126 of 1739. As a result of the chronological progress in mechanics like pendulum condition from Galileo to Euler, the author asserts two conjectures that Euler could apply to obtain the equation of motion at that time.

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권3호
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

A general solution to structural performance of pre-twisted Euler beam subject to static load

  • Huang, Ying;Chen, Chang Hong;Keer, Leon M.;Yao, Yao
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.205-212
    • /
    • 2017
  • Based on the coupled elastic bending deformation features and relationships between the internal force and deformation of pre-twisted Euler beam, the generalized strain, the equivalent constitutive equation and the equilibrium equation of pre-twisted Euler beam are developed. Based on the properties of the dual-antisymmetric matrix, the general solution of pre-twisted Euler beam is obtained. By comparison with ANSYS solution by using straight Beam-188 element based on infinite approach strategy, the results show that the developed method is available for pre-twisted Euler beam and also provide an accuracy displacement interpolation function for the subsequent finite element analysis. The effect of pre-twisted angle on the mechanical property has been investigated.

THE EXACT SOLUTION OF THE GENERALIZED RIEMANN PROBLEM IN THE CURVED GEOMETRIES

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.391-408
    • /
    • 2000
  • In the curved geometries, from the solution of the classical Riemann problem in the plane, the asymptotic solutions of the compressible Euler equation are presented. The explicit formulae are derived for the third order approximation of the generalized Riemann problem form the conventional setting of a planar shock-interface interaction.