Browse > Article
http://dx.doi.org/10.12941/jksiam.2013.17.197

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION  

Lee, Seunggyu (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY)
Lee, Chaeyoung (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY)
Lee, Hyun Geun (INSTITUTE OF MATHEMATICAL SCIENCES, EWHA W. UNIVERSITY)
Kim, Junseok (DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY)
Publication Information
Journal of the Korean Society for Industrial and Applied Mathematics / v.17, no.3, 2013 , pp. 197-207 More about this Journal
Abstract
The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.
Keywords
Cahn-Hilliard equation; Comparison study; Finite-difference method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J.W. Cahn, On spinodal decomposition, Acta. Metall., 9 (1961), 795-801.   DOI   ScienceOn
2 J.W. Cahn and J.E. Hilliard, Free energy of a non-uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.   DOI
3 J.Y. Kim, J.K. Yoon and P.R. Cha, Phase-field model of a morphological instability caused by elastic nonequilibrium, J. Korean Phys. Soc., 49 (2006), 1501-1509.
4 A. Bertozzi, S. Esedoglu and A. Gillette, Inpainting of Binary Images Using the Cahn-Hilliard equation, IEEE Trans. Image Process., 16 (2007), 285-291.   DOI   ScienceOn
5 J.S. Kim, A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys., 204 (2005), 784-804.   DOI   ScienceOn
6 J.S. Kim, A diffuse-interface model for axisymmetric immiscible two-phase flow. Appl. Math. Comput. 160, 589-606 (2005).   DOI   ScienceOn
7 J.S. Kim, K.K. Kang and J.S. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193 (2004), 511-543.   DOI   ScienceOn
8 J.S. Kim and J.S. Lowengrub, Phase field modeling and simulation of three-phase flows, Interfaces Free Bound., 7 (2005), 435-466.
9 C.M. Elliott and D.A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97-128.   DOI
10 H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikard and J. van Wijk, A phase field model for continuous clustering on vectot fields, IEEE Trans. Visual. Comput. Graph., 7 (2001), 230-241.   DOI   ScienceOn
11 S.M.Wise, J.S. Lowengrub, J.S. Kim, K. Thornton, P.W. Voorhees andW.C. Johnson, Quantum dot formation on a strain-patterned epitaxial thin film, Appl. Phys. Lett., 87 (2005), 133102.   DOI   ScienceOn
12 J.S. Kim, A numerical method for the Cahn-Hilliard equation with a variable mobility, Comm. Nonlinear Sci. Numer. Simulat., 12 (2007), 1560-1571.   DOI   ScienceOn
13 J.J. Eggleston, G.B. McFadden and P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Phys. D, 150 (2001), 91-103.   DOI   ScienceOn
14 T. Zhang and Q.Wang, Cahn-Hilliard vs singular Cahn-Hilliard equations in phase field modeling, Commun. Comput. Phys., 7 (2010), 362-382.
15 Q. Du and M. Li, On the stochastic immersed boundary method with an implicit interface formulation, DCDSB., 15 (2011), 373-389.
16 J.W. Kim, D.J. Kim and H.C. Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys., 171 (2001), 132-150.   DOI   ScienceOn
17 C.R. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys, 39 (1981), 201-225.   DOI   ScienceOn
18 S.Welch, J.Wilson, A volume of fluid based method for fluid flows with phase change, J. Comput. Phys., 160 (2000), 662-682.   DOI   ScienceOn
19 S.O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys., 100 (1992), 25.   DOI   ScienceOn
20 J. Du, B. Fix, J. Glimm, X.C. Jia, X.L. Li, Y.H. Li, Y.H. and L.L. Wu, A simple package for front tracking, J. Comput. Phys., 213 (2006), 613-628.   DOI   ScienceOn
21 M. Dehghan and D. Mirzaei, A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional Cahn-Hilliard equation, Eng. Anal. Bound. Elem., 33 (2009), 522-528.   DOI   ScienceOn
22 T.Y. Hou, J.S. Lowengrub and M.J. Shelley, Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput. Phys., 169 (2001), 302-362.   DOI   ScienceOn
23 R.J. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), 1001-1025.
24 J. Sethian and Y. Shan, Solving partial differential equations on irregular domains with moving interfaces, with applications to superconformal electrodeposition in semiconductor manufacturing, J. Comput. Phys., 227 (2008), 6411-6447.   DOI   ScienceOn
25 S.J. Osher and R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer Verlag, 2003.
26 J.A. Sethian, Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1999.
27 F. Liu and H. Metiu, Dynamics of phase-separation of crystal-surfaces, Phys. Rev. B, 48 (1993), 5808-5817.   DOI   ScienceOn
28 D.J. Eyre, Systems for Cahn-Hilliard equations, SIAM J. Appl. Math., 53 (1993), 1686-1712.   DOI   ScienceOn
29 H.D. Ceniceros and A.M. Roma, A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation, J. Comput. Phys., 225 (2007), 1849-1862.   DOI   ScienceOn
30 N. Khiari, T. Achouri, M.L. Ben Mohamed and K. Omrani, Finite difference approximate solutions for the Cahn-Hilliard equation, Numer. Methods Partial Differ. Equ., 23 (2007), 437-455.   DOI   ScienceOn
31 M. Copetti and C.M. Elliott, Kinetics of phase decomposition processes: numerical solutions to the Cahn-Hilliard equation, Mater. Sci. Technol., 6 (1990), 273-283.   DOI
32 Q. Du and R. Nicolaides, Numerical studies of a continuummodel of phase transition, SIAM J. Numer. Anal., 28 (1991), 1310-1322.   DOI   ScienceOn
33 L. Zhang, Long time behavior of difference approximations for the two-dimensional complex Ginzburg-Landau equation, Numer. Funct. Anal. Optim., 31 (2010), 1190-1211.   DOI   ScienceOn
34 R. Acar, Simulation of interface dynamics: a diffuse-interface model, Vis. Comput., 25 (2009), 101-115.   DOI
35 D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, http://www.math.utah.edu/∼eyre/research/methods/stable.ps, 1998.
36 D.J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, In: J.W. Bullard, R. Kalia, M. Stoneham and L. Chen (eds.) Comput. Math. Model. Microstructural Evolut., 1686-1712, Mater. Res. Soc., Pennsylvania, 1998.
37 J.S. Kim and H.O. Bae, An unconditionally stable adaptive mesh refinement for Cahn-Hilliard equation, J. Korean Phys. Soc., 53 (2008), 672-679.   과학기술학회마을   DOI   ScienceOn
38 J.S. Kim, Phase-field models for multi-component fluid flows, Communications in Computational Physics, 12 (2012), 613-661.   DOI
39 S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47(3) (2009), 2269-2288.   DOI   ScienceOn