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A NOTE ON THE APPROXIMATE SOLUTIONS TO

STOCHASTIC DIFFERENTIAL DELAY EQUATION†
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Abstract. The main aim of this paper is to discuss the difference between
the Euler-Maruyama’s approximate solutions and the accurate solution to

stochastic differential delay equation. To make the theory more under-
standable, we impose the non-uniform Lipschitz condition and weakened
linear growth condition. Furthermore, we give the pth moment continuous
of the approximate solution for the delay equation.
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1. Introduction

In the study of stochastic system, a more realistic model would include some
of the past states of the system. Stochastic functional differential equation gives
a mathematical formulation for such system. In addition, in the study of the
stochastic differential delay equations, If there is not any explicit solution then
how we can obtain the approximate solution is a very important matter. One
of the special but important class of stochastic functional differential equations
is the stochastic differential delay equations. In 2016, Kim [5] considered the
following stochastic differential delay equation

dx(t) = F (x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t) (1)

on t ∈ [t0, T ] and defined the Euler-Maruyama approximation to the delay equa-
tion (1) as follows: For each integer n ≥ 1/τ, define xn(t) on [−τ, T ] by

xn(t0 + θ) = ξ(θ) for− τ ≤ θ ≤ 0

Received March 12, 2016. Revised May 23, 2016. Accepted May 26, 2016. ∗Corresponding

author. †This research is financially supported by Changwon National University in 2015–2016.

c⃝ 2016 Korean SIGCAM and KSCAM.

421



422 Young-Ho Kim, Chan-Ho Park and Mun-Jin Bae

and

xn(t) = xn(t0 + k/n) (2)

+

∫ t

t0+k/n

F (xn(t0 + k/n), xn(t0 + (k − 1)/n), s)ds

+

∫ t

t0+k/n

G(xn(t0 + k/n), xn(t0 + (k − 1)/n), s)dB(s)

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · .
In [5], by employing non-uniform Lipschitz condition and weakened linear

growth condition, Kim established the following results for the second moment
to stochastic differential delay equation. The following theorem shows that the
Euler-Maruyama sequence (2) converges to the unique solution of the equation
(1) and gives an estimate for difference between the approximate solution xn(t)
and the accurate solution x(t).

Theorem 1.1 ([5]). Assume that there exists a constant K and a concave func-
tion κ such that

(i) (non-uniform Lipschitz condition) For all t ∈ [t0, T ], and all x, y, x, y ∈ Rd

|F (x, y, t)− F (x, y, t)|2 ∨ |G(x, y, t)−G(x, y, t)|2 ≤ κ(|x− x|2 + |y − y|2);
where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0 and

∫
0+
du/κ(u) = ∞.

(ii) (weakened linear growth condition) there is a K > 0 such that for all
(x, y, t) ∈ Rd ×Rd × [t0, T ],

|F (0, 0, t)|2 ∨ |G(0, 0, t)|2 ≤ K.

Also, assume that δ(·) is Lipschitz continuous, that is there is a positive con-
stant α such that

|δ(t)− δ(s)|2 ≤ α(t− s)

if t0 ≤ s < t ≤ T. Then, for every n > 1 + α, the difference between the Euler-
Maruyama approximate solution xn(t) defined by (2) and the accurate solution
x(t) of equation (1) can be estimate as

E
(

sup
t0≤t≤T

|x(t)− xn(t)|2
)
≤

[
2α3γ + 4α3(T − t0 + 4)(Ĵ1 + Ĵ3)

]
e8α3γ

where γ = (T − t0)(T − t0 + 4),

Ĵ1 = C3[T − t0]
1

n
, Ĵ3 = [C3(T − t0) + 2(β ∨ C3)τ ]

1 + α

n
,

and C3 is defined in [5].

For results related to the stochastic differential equation, see [1]-[12], and
references therein for details. By using the non-uniform Lipschitz condition
and weakened growth condition, Kim [5] studied the difference between the
approximate and the accurate solution to stochastic differential delay equation
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(SDDEs). Motivated by the results, we established some exponential estimate for
the pth moment and estimated on difference between the approximate solutions
and the unique solution to stochastic differential delay equation that can be
obtained from the conditions. When we try to carry over this procedure to
the this delay equation, we used the Euler-Maruyama sequence approximation
procedure.

2. Preliminary

Assume that B(t) is an m-dimensional Brownian motion defined on com-
plete probability space (Ω,F , P ) with a filtration {Ft}t≥t0 satisfying the usual
conditions (i.e. it is right continuous and Ft0 contains all P -null sets), where
B(t) = (B1(t), B2(t), ..., Bm(t))T . And let | · | denote Euclidean norm in Rn. If
A is a vector or a matrix, its transpose is denoted by AT ; if A is a matrix, its
trace norm is represented by |A| =

√
trace(ATA).

Also, let C([−τ, 0];Rd) denote the family of continuous Rd-valued functions
φ defined on [−τ, 0] with norm ∥φ∥ = sup−τ≤θ≤0 |φ|.

In the result [9], they considered the following non-Lipschitz condition and
non-linear growth condition:

(iii) (Non-Lipschitz condition) For any φ,ψ ∈ BC((−∞, 0];Rd) and t ∈
[t0, T ], it follows that

|f(φ, t)− f(ψ, t)|2 ∨ |g(φ, t)− g(ψ, t)|2 ≤ κ(∥φ− ψ∥2),
where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0 and

∫
0+
du/κ(u) = ∞.

(iv) (Non-linear growth condition) f(0, t), g(0, t) ∈ L2 and for all t ∈ [t0, T ],
it follows that

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K,

where K > 0 is a constant. Moreover, the authors established the following
results for d-dimensional stochastic functional differential equation.

Theorem 2.1 ([9]). Assume that the non-Lipschitz condition and non-linear
growth condition hold. Then, there exists a unique solution to the equation

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T, (3)

with initial data.

For more results related to some stochastic differential delay equation, see [2],
[3], [6] - [12], and references therein for details.

On the other hand, we consider a special class of stochastic functional differ-
ential delay equation

dx(t) = F (x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t) (4)

on t ∈ [t0, T ], where F : Rd×Rd×[t0, T ] → Rd and G : Rd×Rd×[t0, T ] → Rd×m

are Borel measurable. If we define

f(φ, t) = F (φ(0), φ(−τ), t) and g(φ, t) = G(φ(0), φ(−τ), t)
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for (φ, t) ∈ C([−τ, 0];Rd) × [t0, T ], then equation (4) can be written as the
equation (3). So we can apply the existence-and-uniqueness theorem established
in the previous theorem to the delay equation (4).

Let us now prepare a few lemmas in order to show the main result.

Lemma 2.2 (Moment inequality, [7]). If p ≥ 2, g ∈ M2([0, T ];Rd×m) such that

E
∫ T

0
|g(s)|p ds <∞, then

E

∣∣∣∣∫ T

0

g(s) dB(s)

∣∣∣∣p ≤
(
p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|g(s)|p ds.

In particular, E|
∫ T

0
g(s) dB(s)|2 = E

∫ T

0
|g(s)|2 ds when p = 2.

Lemma 2.3 (Moment inequality, [7]). Under the same assumptions as Lemma
2.2, we have

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

g(s) dB(s)

∣∣∣∣p) ≤ (
p3

2(p− 1)

) p
2

T
p−2
2 E

∫ T

0

|g(s)|p ds.

3. Approximate solutions

Let us begin with the discussion of the following stochastic differential delay
equation

dx(t) = F (x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t) (5)

on t ∈ [t0, T ], where F : Rd×Rd×[t0, T ] → Rd and G : Rd×Rd×[t0, T ] → Rd×m

are Borel measurable. Moreover, the initial value is followed:

xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} is anFt0 −measurable (6)

BC([−τ, 0];Rd)− value randomvariable such that ξ ∈ M2([−τ, 0];Rd).

Moreover, we impose the non-uniform Lipschitz condition and weakened linear
growth condition:

(v) (Non-uniform Lipschitz condition) For all t ∈ [t0, T ], and all x, y, x, y ∈ Rd

|F (x, y, t)− F (x, y, t)|2 ∨ |G(x, y, t)−G(x, y, t)|2 ≤ κ(|x− x|2 + |y − y|2) (7)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0 and

∫
0+
du/κ(u) = ∞.

(vi) (Weakened linear growth condition) There is a K > 0 such that for all
(x, y, t) ∈ Rd ×Rd × [t0, T ],

|F (0, 0, t)|2 ∨ |G(0, 0, t)|2 ≤ K. (8)

Let us now turn to the Euler-Maruyama approximation procedure. Consider
the stochastic differential delay equation (5) with initial data (6). It is in this
spirit we define the Euler-Maruyama approximation procedure as follows: For
each integer n ≥ 1/τ, define xn(t) on [t0 − τ, T ] by

xn(t0 + θ) = ξ(θ) for− τ ≤ θ ≤ 0
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and

xn(t) = xn(t0 + k/n) (9)

+

∫ t

t0+k/n

F (xn(t0 + k/n), xn(t0 + (k − 1)/n), s)ds

+

∫ t

t0+k/n

G(xn(t0 + k/n), xn(t0 + (k − 1)/n), s)dB(s)

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · . Moreover, if we define
x̂n(t0) = xn(t0), x̃n(t0) = xn(t0 − 1/n),

x̂n(t) = xn(t0 + k/n), and x̃n(t) = xn(t0 + (k − 1)/n)

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · , it then follows from (9)
that

xn(t) = ξ(0) +

∫ t

t0

F (x̂n(s), x̃n(s), s)ds+

∫ t

t0

G(x̂n(s), x̃n(s), s)dB(s). (10)

From now on, xn(t) means the Euler-Maruyama approximation (9). The
following lemma shows that the Euler-Maruyama approximation sequence is
bounded in Lp.

Lemma 3.1. Let (7) and (8) hold and p ≥ 2. Then, for all n ≥ 1/τ , we have

E
(

sup
t0−τ≤s≤t

|xn(s)|p
)

(11)

≤ Ck :=
(
(3p−1 + 1)E∥ξ∥p + C1C2

)
exp(22p−13p−1αp/2C2(T − t0)

−1)

for all t ≥ t0, where C1 = 6p−1(2(p−2)/2αp/2 + Kp/2) and C2 = (T − t0)
p +

[(p3/2(p− 1))p/2](T − t0)
p/2.

Proof. Fix n ≥ 1 arbitrarily. It is easy to see from the equation (10) that

|xn(s)|p ≤ 3p−1|ξ(0)|p + 3p−1
∣∣∣ ∫ t

t0

F (x̂n(s), x̃n(s), s)ds
∣∣∣p (12)

+3p−1
∣∣∣ ∫ t

t0

G(x̂n(s), x̃n(s), s)dB(s)
∣∣∣p

for t0 ≤ t ≤ T. By Hölder’s inequality and Lemma 2.3, it is easy to see from (12)
that for t0 ≤ t ≤ T,

E
(

sup
t0≤s≤t

|xn(s)|p
)

≤ 3p−1E|ξ(0)|p + [3(T − t0)]
p−1E

∫ t

t0

|F (x̂n(s), x̃n(s), s)|pds

+3p−1
( p3

2(p− 1)

) p
2

(T − t0)
p−2
2 E

∫ t

t0

|G(x̂n(s), x̃n(s), s)|pds.
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By the condition (7) and (8), we obtain

E
(

sup
t0≤s≤t

|xn(s)|p
)

≤ 3p−1E|ξ(0)|p + [6(T − t0)]
p−1E

∫ t

t0

{[κ(|x̂n(s)|2 + |x̃n(s)|2)]
p
2 +K

p
2 }ds

+6p−1
( p3

2(p− 1)

) p
2

(T − t0)
p−2
2 E

∫ t

t0

{[κ(|x̂n(s)|2 + |x̃n(s)|2)]
p
2 +K

p
2 }ds.

Given that κ(·) is concave and κ(0) = 0, we can find a positive constant α such
that κ(u) ≤ α(1+u) for all u ≥ 0 and recalling the definition of x̂n(s) and x̃n(s),
we then see that

E
(

sup
t0≤s≤t

|xn(s)|p
)

≤ 3p−1E|ξ(0)|p + C1C2

+22p−23p−1α
p
2C2(T − t0)

−1

∫ t

t0

E
(

sup
t0−τ≤r≤s

|xn(r)|p
)
ds,

where C1 = 6p−1(2(p−2)/2αp/2+Kp/2) and C2 = (T−t0)p+[(p3/2(p−1))p/2](T−
t0)

p/2. Consequently

E
(

sup
t0−τ≤s≤t

|xn(s)|p
)

≤ E∥ξ∥p + E
(

sup
t0≤s≤t

|xn(s)|p
)

≤ (1 + 3p−1)E|ξ(0)|p + C1C2

+22p−23p−1α
p
2C2(T − t0)

−1

∫ t

t0

E
(

sup
t0−τ≤r≤s

|xn(r)|p
)
ds,

An application of the Gronwall inequality implies that

E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤

(
(1 + 3p−1)E|ξ(0)|p + C1C2

)
e2

2p−23p−1α
p
2 C2 ,

and the desired inequality follows immediately. Thus the proof is complete. �

As an application of Lemma 3.1 we show the continuity of the p-th moment
of the Euler-Maruyama’s approximate solution.

Theorem 3.2. Let (7) and (8) hold and p ≥ 2. Then, for any t0 ≤ s < t ≤ T
with t− s < 1, we have

E
(
|xn(t)− xn(s)|p

)
≤ 4p−1

[
K

p
2 + 2

p−2
2 α

p
2 + 2p−1α

p
2Ck

]
C3(t− s)p, (13)

where Ck is defined in Lemma 3.1 and C3 = 1 + (p(p− 1)/2)p/2(t− s)−p/2.
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Proof. It is easy to see from the equation (10) that

xn(t)− xn(s) =

∫ t

s

F (x̂n(r), x̃n(r), r)dr +

∫ t

s

G(x̂n(r), x̃n(r), r)dB(r).

By Hölder’s inequality and Lemma 2.2, it is easy to note that for t0 ≤ t ≤ T,

E
(
|xn(t)− xn(s)|p

)
≤ (2(t− s))p−1E

∫ t

s

|F (x̂n(r), x̃n(r), r)|pdr

+2p−1

(
p(p− 1)

2

) p
2

(t− s)
p−2
2 E

∫ t

s

|G(x̂n(r), x̃n(r), r)|pdr.

By the condition (7) and (8), we obtain

E
(
|xn(t)− xn(s)|p

)
≤ 4p−1K

p
2C3(t− s)p + 4p−1C3(t− s)p−1

∫ t

s

[
κ(|x̂n(r)|2 + |x̃n(r)|2)

] p
2 dr,

where C3 = 1 + (p(p− 1)/2)p/2(t− s)−p/2.
Given that κ(·) is concave and κ(0) = 0, we can find a positive constant α

such that κ(u) ≤ α(1 + u) for all u ≥ 0. Therefore

E
(
|xn(t)− xn(s)|p

)
≤ 4p−1K

p
2C3(t− s)p + 4p−12

p−2
2 α

p
2C3(t− s)p

+8p−1α
p
2C3(t− s)p−1

∫ t

s

E
(

sup
t0−τ≤r≤s

|xn(r)|p
)
ds.

Hence, by Lemma 3.1,

E
(
|xn(t)− xn(s)|p

)
≤ 4p−1

[
K

p
2 + 2

p−2
2 α

p
2 + 2p−1α

p
2Ck

]
C3(t− s)p

and the desired inequality follows immediately. Thus the proof is complete. �

Moreover, under non-uniform Lipschitz condition (7) and weakened linear
growth condition (8), we are still able to show that the solution of the delay
equation (5) is bounded in Lp, that is, the pth moment of the solution satisfies

E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤ Cl. (14)

In view of Theorem 3.2, we could know that the continuity of the pth moment
of the solution of equation (5) satisfies

E
(
|x(t)− x(s)|p

)
≤ Cm(t− s)p, (15)

This means that the pth moment of the solution is continuous. But the details
are left to the reader.
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The following theorem shows that the Euler-Maruyama approximate solution
of the equation (9) gives an estimate for the difference between the approximate
solution xn(t) and the accurate solution x(t).

Theorem 3.3. Let (7) and (8) hold and p ≥ 2. Assume that the initial data
ξ = {ξ(θ) : −τ ≤ θ ≤ 0} is uniformly Lipschitz Lp-continuous, that is, there is
a positive constant β such that

E|ξ(θ1)− ξ(θ2)|p ≤ β(θ2 − θ1)
p (16)

if −τ ≤ θ1 < θ2 ≤ 0. Then, the difference between the Euler-Maruyama ap-
proximate solution xn(t) and the accurate solution x(t) of equation (5) can be
estimate as

E
(

sup
t0≤t≤T

|x(t)− xn(t)|p
)

≤
[
1 + 2p−1(Cm + (β ∨ Cm)2p)n−p

]
C2C4 exp (2

pC2C4) ,

where C2 = (T − t0)
p + [(p3/2(p− 1))p/2](T − t0)

p/2, C4 = 2p−13
p−2
2 α

p
2 .

Proof. By Hölder’s inequality, we can derive that

|x(s)− xn(s)|p

≤ [2(t− t0)]
p−1

∫ t

t0

|F (x(s), x(s− τ), s)− F (x̂n(s), x̃n(s), s)|pds

+2p−1

∣∣∣∣∫ t

t0

G(x(s), x(s− τ), s)−G(x̂n(s), x̃n(s), s)ds

∣∣∣∣p .
By Lemma 2.3, the condition (7) and (8), we then see that

E
(

sup
t0≤s≤t

|x(s)− xn(s)|p
)

≤ 2p−1C2(T − t0)
−1E

∫ t

t0

[
κ(|x(s)− x̂n(s)|2 + |x(s− τ)− x̃n(s)|2)

] p
2 ds.

Given that κ(·) is concave and κ(0) = 0, we can find a positive constant α such
that κ(u) ≤ α(1 + u) for all u ≥ 0. Therefore

E
(

sup
t0≤s≤t

|x(s)− xn(s)|p
)
≤ 2p−13

p
2−1α

p
2C2 (17)

+2p−13
p
2−1α

p
2C2(T − t0)

−1E

∫ t

t0

[|x(s)− x̂n(s)|p + |x(s− τ)− x̃n(s)|p]ds.

Define x̂(t0) = x(t0), x̃(t0) = x(t0 − 1/n), x̂(t) = x(t0 + k/n), and x̃(t) =
x(t0 + k/n− 1/n) for t0 + k/n < t ≤ [t0 + (k+1)/n]∧ T, k = 0, 1, 2, · · · , it then
follows from (17) that

E
(

sup
t0≤s≤t

|x(s)− xn(s)|p
)

≤ 2p−13
p
2−1α

p
2C2 + 4p−13

p
2−1α

p
2C2(T − t0)

−1[J1 + J2]
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+22p−13
p
2−1α

p
2C2(T − t0)

−1

∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− xn(r)|2
)
ds,

where

J1 =

∫ t

t0

E|x(s)− x̂(s)|pds and J2 =

∫ t

t0

E|x(s− τ)− x̃(s)|pds.

An application of the Gronwall inequality implies that

E
(

sup
t0≤s≤t

|x(s)− xn(s)|p
)
≤ 2p−13

p
2−1α

p
2C2

+4p−13
p
2−1α

p
2C2(T − t0)

−1[J1 + J2] exp
(
22p−13

p
2−1α

p
2C2

)
. (18)

We now estimate J1 and J2. By the condition (15), we can estimate

J1 =

∫ t

t0

E|x(s)− x(t0 + k/n)|pds (19)

=
∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

E|x(s)− x(t0 + k/n)|pds

≤ Cm

(
1

n

)p ∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

ds

= Cm

(
1

n

)p

[T − t0].

Also, by the condition (15) and (16), we can estimate

J2 =

∫ t

t0

E|x(s− τ)− x(t0 + k/n− 1/n)|pds

≤
∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

E|x(s− τ)− x(t0 + k/n− 1/n)|pds

≤
∑
k≥0

∫ [t0+(k+1)/n]∧τ

t0+k/n

(β ∨ Cm)

(
2

n
− τ

)p

ds.

It is easy to show that

J2 ≤ (β ∨ Cm)

(
2

n

)p

(T − t0) (20)

if −τ ≤ s < t ≤ τ, t− s ≤ 1.
Substituting (19) and (20) into (18) yields that

E
(

sup
t0≤s≤t

|x(s)− xn(s)|p
)

≤ 2p−13
p−2
2 α

p
2

[
1 + 2p−1(Cm + (β ∨ Cm)2p)n−p

]
C2 exp

(
22p−13

p−2
2 α

p
2C2

)
.

Thus the proof is complete. �
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In the case when both functions F and G are independent of t, the Euler-
Maruyama approximate solutions can be defined by a simpler form, that is (5)
can be replaced by

xn(t0 + θ) = ξ(θ) for− τ ≤ θ ≤ 0

and

xn(t) = xn(t0 + k/n) (21)

+F (xn(t0 + k/n), xn(t0 + (k − 1)/n))[t− t0 − k/n]

+G(xn(t0 + k/n), xn(t0 + (k − 1)/n))[B(t)−B(t0 + k/n)]

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · .
Let us second discuss the Euler-Maruyama approximation procedure. Con-

sider the following stochastic differential delay equation

dy(t) = F (y(t), y(t− δ(t)), t)dt+G(y(t), y(t− δ(t)), t)dB(t) (22)

on t ∈ [t0, T ] with initial data, where δ : [t0, T ] → [0, τ ], F : Rd ×Rd × [t0, T ] →
Rd and G : Rd × Rd × [t0, T ] → Rd×m are Borel measurable. In the case
when the time delay function δ(t) is Lipschitz continuous, the Euler-Maruyama
approximate sequence of the equation (22) can be definde as follows: For each
integer n ≥ 1, define yn(t) on [t0 − τ, T ] by

yn(t0 + θ) = ξ(θ) for− τ ≤ θ ≤ 0

and

yn(t) = yn(t0 + k/n) (23)

+

∫ t

t0+k/n

F (yn(t0 + k/n), yn(t0 + k/n− δ(s)), s)ds

+

∫ t

t0+k/n

G(yn(t0 + k/n), yn(t0 + k/n− δ(s)), s)dB(s)

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · .
Moreover, under non-uniform Lipschitz condition (7) and weakened linear

growth condition (8), we are still able to show that the Euler-Maruyama ap-
proximation sequence (23) is bounded in L2.

From now on, yn(t) means the Euler-Maruyama approximation (23). The
following lemma shows that the Euler-Maruyama approximation sequence is
bounded in Lp.

Lemma 3.4. Let (7) and (8) hold and p ≥ 2. Then, for all n ≥ 1/τ , we have

E
(

sup
t0−τ≤s≤t

|yn(s)|p
)
≤ Ck

for all t ≥ t0, where Ck is defined in Lemma 3.1.

Proof. The proof is similar to the proof of Lemma 3.1, but the details are left
to the reader. �
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As an application of Lemma 3.4 we show the continuity of the p-th moment
of the Euler-Maruyama’s approximate sequence.

Theorem 3.5. Let (7) and (8) hold and p ≥ 2. Then, for any t0 ≤ s < t ≤ T
with t− s < 1, we have

E
(
|yn(t)− yn(s)|p

)
≤ 4p−1

[
K

p
2 + 2

p−2
2 α

p
2 + 2p−1α

p
2Ck

]
C3(t− s)p, (24)

where Ck is defined in Lemma 3.1 and C3 = 1 + (p(p− 1)/2)p/2(t− s)−p/2.

Proof. The proof is similar to the proof of Theorem 3.2, but the details are left
to the reader. �

Moreover, under non-uniform Lipschitz condition (7) and weakened linear
growth condition (8), we are still able to show that the solution of the delay
equation (22) is bounded in Lp, that is, the pth moment of the solution satisfies

E
(

sup
t0−τ≤s≤t

|y(s)|p
)
≤ Cl1 . (25)

In view of Theorem 3.5, we could know that the continuity of the pth moment
of the solution of equation (22) satisfies

E
(
|y(t)− y(s)|p

)
≤ Cm1(t− s)p. (26)

This means that the pth moment of the solution is continuous.
The following theorem estimates the difference between Euler-Maruyama ap-

proximate sequence and the accurate solution of equation (22).

Theorem 3.6. In addition to the assumptions of Theorem 3.3. Then the dif-
ference between the Euler-Maruyama approximate solution yn(t) defined by (23)
and the accurate solution y(t) of equation (22) can be estimate as

E
(

sup
t0≤s≤t

|y(s)− yn(s)|p
)

≤
[
1 + 2p−1(Cm1 + 2(β ∨ Cm1))n

−p
]
C2 exp (2

pC2C4) ,

where C2 = (T − t0)
p + [(p3/2(p− 1))p/2](T − t0)

p/2, C4 = 2p−13
p−2
2 α

p
2 .

Proof. This theorem can be proved in the same way as in the proof of Theorem
3.3 with a little bit careful consideration on the estimation of the integral. If
we define ŷn(t) = yn(t0 + k/n), ỹn(t) = yn(t0 + k/n − δ(s)) for t0 + k/n < t ≤
[t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · · , by Hölder’s inequality, we can derive that

|y(s)− yn(s)|p

≤ [2(t− t0)]
p−1

∫ t

t0

|F (y(s), y(s− δ(s)), s)− F (ŷn(s), ỹn(s), s)|pds

+2p−1

∣∣∣∣∫ t

t0

G(y(s), y(s− δ(s)), s)−G(ŷn(s), ỹn(s), s)ds

∣∣∣∣p .
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By Lemma 2.3, the condition (7) and (8), we then see that

E
(

sup
t0≤s≤t

|y(s)− yn(s)|p
)

≤ 2p−1C2(T − t0)
−1E

∫ t

t0

[
κ(|y(s)− ŷn(s)|2 + |y(s− δ(s))− ỹn(s)|2)

] p
2 ds.

Given that κ(·) is concave and κ(0) = 0, we can find a positive constant α such
that κ(u) ≤ α(1 + u) for all u ≥ 0. Therefore

E
(

sup
t0≤s≤t

|y(s)− yn(s)|p
)
≤ 2p−13

p
2−1α

p
2C2 (27)

+2p−13
p
2−1α

p
2C2(T − t0)

−1E

∫ t

t0

[|y(s)− ŷn(s)|p + |x(s− δ(s))− ỹn(s)|p]ds.

Define ŷ(t0) = y(t0), ỹ(t0) = y(t0 − δ(t0)), ŷ(t) = y(t0 + k/n), and ỹ(t) =
y(t0 + k/n− δ(s)) for t0 + k/n < t ≤ [t0 +(k+1)/n]∧T, k = 0, 1, 2, · · · . It then
follows from (27) that

E
(

sup
t0≤s≤t

|y(s)− yn(s)|p
)

≤ 2p−13
p
2−1α

p
2C2 + 4p−13

p
2−1α

p
2C2(T − t0)

−1[M1 +M2]

+22p−13
p
2−1α

p
2C2(T − t0)

−1

∫ t

t0

E
(

sup
t0≤r≤s

|y(r)− yn(r)|2
)
ds,

where

M1 =

∫ t

t0

E|y(s)− ŷ(s)|pds and M2 =

∫ t

t0

E|y(s− δ(s))− ỹ(s)|pds.

An application of the Gronwall inequality implies that

E
(

sup
t0≤s≤t

|y(s)− yn(s)|p
)
≤ {2p−13

p
2−1α

p
2C2

+4p−13
p
2−1α

p
2C2(T − t0)

−1[M1 +M2]} exp
(
22p−13

p
2−1α

p
2C2

)
. (28)

We now estimate M1 and M2. By the condition (26), we can estimate

M1 =

∫ t

t0

E|y(s)− y(t0 + k/n)|pds (29)

=
∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

E|y(s)− y(t0 + k/n)|pds

≤ Cm1n
−p

∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

ds

= Cm1n
−p[T − t0].
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Also, by the condition (15) and (26), we can estimate

M2 =

∫ t

t0

E|y(s− δ(s))− x(t0 + k/n− δ(s))|pds (30)

≤
∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

E|y(s− δ(s))− y(t0 + k/n− δ(s))|pds

≤ Cm1n
−p(T − t0) + 2(β ∨ Cm1)n

−p(T − t0).

Substituting (29) and (30) into (28) yields that

E
(

sup
t0≤s≤t

|y(s)− yn(s)|p
)

≤ 2p−13
p−2
2 α

p
2

[
1 + 2p−1(Cm1 + 2(β ∨ Cm1))n

−p
]
C2 exp

(
22p−13

p−2
2 α

p
2C2

)
.

Thus the proof is complete. �
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