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Abstract. We derive a family of non-linear differential equations from the generating

functions of the Euler polynomials and study the solutions of these differential equations.

Then we give some new and interesting identities and formulas for the Euler polynomials

of higher order by using our non-linear differential equations.

1. Introduction

The Euler polynomials En(x) are defined by generating functions as follows:

(1.1)
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
. (see [2, 4, 5])

In the special case x = 0, En(0) = En for n = 0, 1, . . . are called the n-th Euler
numbers. (see [4])

By (1.1), we get

(1.2) En(x) =
∞∑
ℓ=0

(
n

ℓ

)
xn−ℓEℓ, for n ∈ Z+ = N ∪ {0}.

Thus, by (1.1) and (1.2), we get the recursive relation for En’s as follows:

E0 = 1,

(E + 1)n + En =

{
2 if n = 0,

0 if n > 0.

(1.3)
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with the usual convention of replacing Ek’s in the binomial expansion of (E + 1)n

by Ek’s.
In [11], Nielson obtained a formula for the product of two Euler polynomials

En(x) and Em(x) as follows:

Em(x)En(x) = 2
m∑
r=1

(
m

r

)
Er

Bm+n−r+1(x)

m+ n− r + 1
+

+ 2

n∑
s=1

(
n

s

)
Es

Bm+n−s+1(x)

m+ n− s+ 1
+ (−1)n+12

m!n!

(m+ n+ 1)!
Em+n+1,

where Bm(x) is the well-known Bernoulli polynomials. (See [2, 4, 5, 12]).

For r ∈ N, the Euler polynomials E
(r)
n (x) of order r are defined by generating

functions as follows:

(1.4)

(
2

et + 1

)
· · ·
(

2

et + 1

)
︸ ︷︷ ︸

r-times

ext =
∞∑

n=0

E(r)
n (x)

tn

n!
.

In the special case x = 0, E
(r)
n (0) = E

(r)
n are called the n-th Euler numbers of order

r. (see [1–15,17])
In this paper, using the idea of T. Kim [10], we derive a family of non-linear

differential equations from (1.1) and study the solutions of these differential equa-
tions. Then we give some new and interesting identities and formulas for the Euler
polynomials of higher order by using our non-linear differential equations.

2. The Non-linear Differential Equations

Throughout this paper, we put

(2.1) F = F (t) =
1

et + 1
.

Then we get

(2.2) F ′(t) = − et

(et + 1)2
=

1

(et + 1)2
− 1

et + 1
= F 2 − F.

We rewrite (2.2) as

(2.3) F 2 = F ′ + F,

and differentiate both sides with respect to t to get

(2.4) 2FF ′ = F ′′ + F ′.
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Now, by (2.2), we may replace F ′ in the left hand side of (2.4) by F 2−F to obtain

(2.5) 2F (F 2 − F ) = F ′′ + F ′,

and consequently

(2.6) 2F 3 = 2F 2 + F ′′ + F ′.

From (2.3) and (2.6), we get

2F 3 = 2(F ′ + F ) + F ′′ + F ′

= F ′′ + 3F ′ + 2F.

(2.7)

Now we repeat the process from (2.4) to (2.7). We start from differentiating both
sides of (2.7).

3!F 2F ′ = F (3) + 3F (2) + 2F (1),(9′)

3!F 2(F 2 − F ) = F (3) + 3F (2) + 2F (1),(10′)

3!F 4 = 3!F 3 + (F (3) + 3F (2) + 2F (1)),(11′)

3!F 4 = 3(F ′′ + 3F ′ + 2F ) + F (3) + 3F (2) + 2F (1), from (2.7) and (11′)

3!F 4 = F (3) + 6F (2) + 11F (1) + 6F.(12′)

We want to generalize the pattern (2.3), (2.7) and (12′) to obtain

(2.8) (N − 1)!FN =
N−1∑
k=0

ak(N)F (k), for all N ∈ N

for some suitable coefficients ak(N)’s. By letting N = 1 in (2.8), it is easy to get

(2.9) a0(1) = 1.

Taking the derivative of (2.8), we have

(2.10) N !FN−1F ′ =

N−1∑
k=0

ak(N)F (k+1) =

N∑
k=1

ak−1(N)F (k).

But

N !FN−1F ′ = N !FN−1(F 2 − F ) (by (2.2))

= N !FN+1 −N !FN .

Thus
N∑

k=1

ak−1(N)F (k) = N !FN+1 −N !FN
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and hence

N !FN+1 = N !FN +
N∑

k=1

ak−1(N)F (k)

= N(N − 1)!FN +
N∑

k=1

ak−1(N)F (k)

= N
N−1∑
k=0

ak(N)F (k) +
N∑

k=1

ak−1(N)F (k), (by (2.8)).(2.11)

By replacing N by N + 1, (2.8) may be rewritten as

(2.12) N !FN+1 =
N∑

k=0

ak(N + 1)F (k).

Combining (2.12) and (2.11), we get

(2.13)
N∑

k=0

ak(N + 1)F (k) = N
N−1∑
k=0

ak(N)F (k) +
N∑

k=1

ak−1(N)F (k).

By comparing the coefficients of F (k)’s in the left and right side of above identity,
we obtain the following recursive formulas:

a0(N + 1) = Na0(N),(2.14)

ak(N + 1) = Nak(N) + ak−1(N), (1 ≤ k ≤ N − 1)(2.15)

aN (N + 1) = aN−1(N),(2.16)

where we set

(2.17) ak(N) = 0 for k ≥ N or k < 0.

From (2.9), (2.14), (2.15), (2.16) and (2.17), T. Kim was able to obtain an explicit
formula for ak(N) as follows. (see [10])

(2.18) ak(N) =
N !

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1
.

Therefore (2.8) now becomes

(N − 1)!FN =
N−1∑
k=0

N !

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1
F (k),

and consequently we obtain the following theorem.
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Theorem 2.1. For each N ∈ N, the following non-linear differential equation with
respect to t:

(2.19) FN (t) = N

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1
F (k)(t)

where F (k)(t) = dkF (t)
dtk

and FN (t) = F (t)× · · · × F (t)︸ ︷︷ ︸
N-times

has a solution

F (t) =
1

et + 1
.

3. Some Identities Concerning Euler Polynomials of Order r

We set

FN (t, x) = F (t)× F (t)× · · · × F (t)︸ ︷︷ ︸
N-times

ext, for N ∈ N,(3.1)

F (k)(t, x) = F (k)(t)ext, for k ∈ Z+.(3.2)

Then, by multiplying ext to both sides of (2.19), we have the following corollary.

Corollary 3.1. For each n ∈ N, the differential equation

(3.3) FN (t, x) = N
N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1
F (k)(t, x)

has a solution F (t, x) = ext

et+1 .

The goal of this section is to find an explicit formula for Euler polynomials of
order r using the Euler numbers. But first, we will work on Euler numbers of order
r instead of Euler polynomials of order r.

By letting x = 0 in (1.1) and (1.4), we get

2

et + 1
=

∞∑
n=0

En
tn

n!
,(3.4)

(
2

et + 1

)
× · · · ×

(
2

et + 1

)
︸ ︷︷ ︸

N-times

=
∞∑

n=0

E(N)
n

tn

n!
.(3.5)
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From (2.1) and (3.4), we get

(3.6) F (t) =
1

2

∞∑
n=0

En
tn

n!

and from (3.5),

FN (t) =

(
1

et + 1

)N

=
1

2N

(
2

et + 1

)N

=
1

2N

∞∑
n=0

E(N)
n

tn

n!
.(3.7)

Note that we have the following by differentiating both sides of (3.6) k-times:

(3.8) F (k)(t) =
1

2

∞∑
n=0

En+k
tn

n!
.

From (2.19) in Theorem 2.1, (3.7) and (3.8) , we get

N

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1
F (k)(t)

= N
N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1

1

2

∞∑
n=0

En+k
tn

n!

=
1

2
N

∞∑
n=0

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

En+k

ℓ1ℓ2 · · · ℓk+1

tn

n!
(3.9)

=
1

2N

∞∑
n=0

E(N)
n

tn

n!
.(3.10)

Finally, from (3.9) and (3.10) we obtain the following theorem.

Theorem 3.2. For N ∈ N, n ∈ Z+, the n-th Euler number of order N is given by

(3.11) E(N)
n = N2N−1

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

En+k

ℓ1ℓ2 · · · ℓk+1
.



Some Identities Involving Euler Polynomials 559

From (3.7) and (3.4), we can derive the following equation:

∞∑
n=0

E(N)
n

tn

n!
=

(
2

et + 1

)N

=

( ∞∑
ℓ1=0

Eℓ1

tℓ1

ℓ1!

)
× · · · ×

( ∞∑
ℓN=0

EℓN

tℓN

ℓN !

)

=

∞∑
n=0

( ∑
ℓ1+···+ℓN=n

Eℓ1 · · ·EℓNn!

ℓ1! · · · ℓN !

)
tn

n!

=

∞∑
n=0

( ∑
ℓ1+···+ℓN=n

(
n

ℓ1 · · · ℓN

)
Eℓ1 · · ·EℓN

)
tn

n!
.(3.12)

From (3.11) and (3.12) we get the following corollary.

Corollary 3.3.

(3.13)∑
ℓ1+···+ℓN=n

(
n

ℓ1 · · · ℓN

)
Eℓ1 · · ·EℓN = N2N−1

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

En+k

ℓ1ℓ2 · · · ℓk+1
.

We obtained Theorem 3.2, a formula for the n-th Euler numbers of order N ,
using Theorem 2.1. If we use Corollary 3.1 instead of Theorem 2.1, then we can
obtain Theorem 3.4, a formula for the n-th Euler polynomials of order N .

We start from (3.2) and (3.8) as follows:

F (k)(t, x) = F (k)(t)ext =
1

2

∞∑
n=0

En+k
tn

n!
ext

=
1

2

∞∑
m=0

Em+k
tm

m!

∞∑
ℓ=0

tℓ

ℓ!
xℓ

=
1

2

∞∑
n=0

( ∑
m+ℓ=n

n!

m!ℓ!

tn

n!
Em+kx

ℓ

)

=
1

2

∞∑
n=0

(
n∑

m=0

(
n

m

)
Em+kx

n−m

)
tn

n!
.(3.14)
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In Corollary 3.1, replace F (k)(t, x) by (3.14) to get

FN (t, x)

(3.15)

= N
N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1

1

2

∞∑
n=0

(
n∑

m=0

(
n

m

)
Em+kx

n−m

)
tn

n!

=

∞∑
n=0

N

2

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1

n∑
m=0

(
n

m

)
Em+kx

n−m

 tn

n!
.

(3.16)

But (1.4) can be written as

(3.17) 2NFN (t, x) =
∞∑

n=0

E(N)
n (x)

tn

n!
.

Finally, from (3.16) and (3.17), we get the following theorem.

Theorem 3.4. For N ∈ N, n ∈ Z+, the n-th Euler polynomial of order N is given
by

(3.18)

E(N)
n (x) = N2N−1

N−1∑
k=0

1

(k + 1)!

∑
ℓ1+···+ℓk+1=N

1

ℓ1ℓ2 · · · ℓk+1

n∑
m=0

(
n

m

)
Em+k x

n−m.

We will conclude our paper by giving two more formulas for E
(N)
n (x). They are

given in Proposition 3.5 and Proposition 3.6.

First, multiply 2Next to both sides of (3.7). Then we have

(3.19) 2NFN (t)ext =
∞∑

n=0

E(N)
n

tn

n!
ext.



Some Identities Involving Euler Polynomials 561

Then apply the usual trick of utilizing the Taylor expansion of ext to get

2NFN (t)ext =

( ∞∑
ℓ=0

E
(N)
ℓ

tℓ

ℓ!

)( ∞∑
m=0

xm tm

m!

)
(3.20)

=

∞∑
n=0

( ∑
ℓ+m=n

E
(N)
ℓ

n!

ℓ!m!

tn

n!
xm

)
(3.21)

=

∞∑
n=0

(
n∑

ℓ=0

(
n

ℓ

)
xn−ℓE

(N)
ℓ

)
tn

n!
(3.22)

Note that (3.17) can be written as

(3.23) 2NFN (t, x) = 2NFN (t)ext =
∞∑

n=0

E(N)
n (x)

tn

n!
.

By comparing the coefficients of tn

n! in the r.h.s’s of above two equations, we get

Proposition 3.5.

(3.24) E(N)
n (x) =

n∑
ℓ=0

(
n

ℓ

)
xn−ℓE

(N)
ℓ .

Second, rewrite (1.4) as

∞∑
n=0

E(N)
n (x)

tn

n!
= 2NFN (t)etx.

Using (3.6) and the Taylor expansion for etx, above equation becomes

∞∑
n=0

E(N)
n (x)

tn

n!
=

( ∞∑
ℓ1=0

Eℓ1

ℓ1!
tℓ1

)
× · · · ×

( ∞∑
ℓ1=0

EℓN

ℓN !
tℓN

) ∞∑
m=0

xm

m!
tm

=
∞∑

n=0

( ∑
ℓ1+···+ℓN+m=n

Eℓ1 · · ·EℓN

ℓ1! · · · ℓN !m!
xmn!

)
tn

n!

=
∞∑

n=0

( ∑
ℓ1+···+ℓN+m=n

(
n

ℓ1, . . . , ℓN ,m

)
Eℓ1 · · ·EℓNxm

)
tn

n!

By comparing the coefficients of tn’s on both sides, we finally get
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Proposition 3.6.

(3.25) E(N)
n (x) =

∑
ℓ1+···+ℓN+m=n

(
n

ℓ1, . . . , ℓN ,m

)
Eℓ1 · · ·EℓNxm.
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