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ON p-ADIC EULER L-FUNCTION OF TWO VARIABLES†
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Abstract. We consider a p-adic Euler L-function of two variables which

interpolate the generalized Euler polynomials at nonpositive integers. We
also show that the reflection formula and the functional equation for these

functions.
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1. Introduction

Let p be an odd prime number. Let Qp be the topological completion of Q
with respect to the metric topology induced by | · |p. Let Cp be the field of p-
adic completion of algebraic closure of Qp. Let vp denote the p-adic exponential
valuation on Cp, normalized so that vp(p) = 1.

For a primitive Dirichlet character χ with odd conductor fχ, the generalized
Euler polynomials En,χ(t) are defined by the generating function

2

fχ∑
a=1

(−1)aχ(a)e(a+t)x

efχx + 1
=

∞∑
n=0

En,χ(t)
xn

n!
(1)

(see [5, 9, 16, 19]). The corresponding generalized Euler numbers can be defined
by En,χ = En,χ(0). With this definition, the generalized Euler polynomials can
also be expressed in terms of the expansion

En,χ(t) =

n∑
k=0

(
n

k

)
En−k,χt

k, (2)

which may be derived from (1). Let Q(χ) denote the field generated over Q
by all the values χ(a), a ∈ Z. Then it can be shown that En,χ ∈ Q(χ) for each
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n ≥ 0, and En,χ(t) ∈ Q(χ, t). Recently, many authors have studied these and
other related subject (see, e.g., [8, 14, 15]).

The p-adic analogue of Dirichlet L-functions were introduced and studied
by Kubota and Leopoldt [11]. It becomes quite important in number theory
after the works of Iwasawa [4], particularly in the theory of cyclotomic fields
[12] and p-adic modular forms [22]. Recently, properties for several variations
of Kubota-Leopoldt’s p-adic L-functions have been studied by many authors
(see [2, 4, 9, 13, 17, 18, 19, 23, 21, 24, 25]). And the p-adic functions which
interpolate the Bernoulli and Euler polynomials have also been investigated by
Tsumura [23], Kim [5, 6, 7], Cohn [1] and Young [20]. The constructions are
based on p-adic gamma transforms, although Tsumura, Kim, Cohn and Young
applied this technique to different areas of p-adic complex plane Cp.

The two variable p-adic L-functions have been studied by Fox [2], Simsek [19]
and Young [21]. These functions interpolate the generalized Bernoulli polyno-
mials at nonpositive integers. By using these functions, Kummer’s congruences
for generalized Bernoulli polynomials are established.

In this paper, we construct the p-adic Euler L-functions Lp,E(s, t;χ) which
interpolate the generalized Euler polynomials En,χ(t) at nonpositive integers, in
analogue with Fox’s construction of p-adic L-functions of two variable Lp(s, t;χ)
in [2]. The methods follow from Iwasawa’ s construction of p-adic L-functions in
[4, Chapter 3] not involving the p-adic gamma transforms. We also prove sev-
eral properties of Lp,E(s, t;χ), such as the reflection formula and the functional
equation.

2. Construction of the p-adic Euler L-function Lp,E(s, t;χ)

Throughout this paper, let p be an odd rational prime number.
In this section, by applying the method of Fox [2, Theorem 3.13] on the

existence of a specific two-variable p-adic L-function, we construct the p-adic
function Lp,E(s, t;χ) and we also express them in an explicit form.

Note that there exist ϕ(p) distinct solutions, modulo p, to the equation xϕ(p)−
1 = 0, and each solution must be congruent to one of the values a ∈ Z, where 1 ≤
a ≤ p, (a, p) = 1. Thus, by Hensel’s Lemma, given a ∈ Z with (a, p) = 1, there
exists a unique ω(a) ∈ Zp, where ω(a)ϕ(p) = 1, such that ω(a) ≡ a (mod pZp).
Letting ω(a) = 0 for a ∈ Z such that (a, p) 6= 1, it can be seen that ω is actually
a Dirichlet character having conductor fω = p, called the Teichmüller character.
Let 〈a〉 = ω−1(a)a. Then 〈a〉 ≡ 1 (mod pZp).

If t ∈ Cp such that |t|p ≤ 1, then for any a ∈ Z, a + pt ≡ a (mod pZp[t]).
Thus, we define ω(a+ pt) = ω(a) for these values of t. We also define 〈a+ pt〉 =
ω−1(a)(a+pt) for such t. Therefore, 〈a+pt〉 = 〈a〉+pω−1(a)t, so that 〈a+pt〉 ≡ 1
(mod pZp[t]).

We also define a particular subring of Cp by

D =

{
s ∈ Cp : vp(s) > −1 +

1

p− 1

}
.
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Since 1 ∈ D and any point of a p-adic disc is its center, D is the same as the set
D = {s ∈ Cp : vp(1− s) > −1 + 1

p−1}.
To our purpose, we shall need to make a slight extension of the definition of

p-adic Euler L-functions. Additional informations about these functions can be
found in [10].

Let χ be the Dirichlet character with odd conductor f = fχ, N0 = N ∪ {0}.
Let Qp(χ) denote the field generated over Qp by χ(a), a ∈ Z (in an algebraic
closure of Qp). Qp(χ) is a locally compact topological field containing Q(χ) as
a dense subfield. Let t ∈ Cp, |t|p ≤ 1, and let Qp(χ, t), the field generated over
Qp by adjoining t and the values χ(a), a ∈ Z. For n ∈ N, we define χn to be the
primitive character associated with the character χn : (Z/l.c.m.(f, p)Z)× → C×
defined by χn(a) = χ(a)ω−n(a). We define a sequence of elements εn,χ(t), n ≥ 0,
in Qp(χ, t) by

εn,χ(t) = En,χn(pt)− χn(p)pnEn,χn(t), (3)

where En,χn(t) is the generalized Euler polynomial and n ∈ N0. Note that χn(a)
is in Qp(χ) for any n ∈ N0 and a ∈ Z.

In what follows, we construct a p-adic L-function of two variables which in-
terpolates the generalized Euler polynomials at nonpositive integers. First, we
need the following two lemmas.

Lemma 2.1 ([10, Proposition 5.4(2)]). If n ∈ Z and n ≥ 0, then there exists a
Witt’s formula of En,χ(t) in the p-adic field Qp(χ, t) such that

En,χ(t) = lim
N→∞

fpN∑
a=1

(−1)aχ(a)(a+ t)n,

where we set χ(a) = 0 if a is not prime to the conductor f.

Lemma 2.2. In the p-adic field Qp(χ, t), for n ∈ Z, n ≥ 0, we have

En,χ(t)− χ(p)pnEn,χ

(
t

p

)
= lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)(a+ t)n.

Proof. From Lemma 2.1, we see that

En,χ(t)− χn(p)pnEn,χ

(
t

p

)

= lim
N→∞

fpN∑
a=1

(−1)aχ(a)(a+ t)n −
fpN−1∑
a=1

(−1)apχ(ap)(ap+ t)n


= lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)(a+ t)n,

since p is an odd prime number. �
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Now we consider a p-adic Euler L-function of two variables and we also com-
pute its value at nonpositive integers.

Define

Lp,E(s, t;χ) = lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉1−s, (4)

which is analytic for s ∈ D and t ∈ Cp such that |t|p ≤ 1.

Theorem 2.3. For n ∈ N and t ∈ Cp such that |t|p ≤ 1, we have

Lp,E(1− n, t;χ) = εn,χ(t).

Proof. Let n ∈ N and t ∈ Cp such that |t|p ≤ 1. From (4), we obtain

Lp,E(1− n, t;χ) = lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉n

= lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)ω−n(a)(a+ pt)n.

(5)

Therefore by Lemma 2.2, we have

Lp,E(1− n, t;χ)

= lim
N→∞

fpN∑
a=1

(−1)aχn(a)(a+ pt)n −
fpN−1∑
a=1

(−1)apχn(ap)(ap+ pt)n


= En,χn(pt)− χn(p)pnEn,χn(t)

= εn,χ(t).

(6)

This is the desired result. �

Define the forward difference operator ∆c by the equation

∆can = an+c − an, (7)

where an denotes a function of n, that is, an = a(n). The power ∆k
c of ∆c

are defined by ∆0
c =identity and ∆k

c = ∆c ◦ ∆k−1
c for positive integers k. The

following is a fundamental result for the kth difference of the function an, which
can be found in [3, p. 196].

Lemma 2.4. Let ∆ be forward difference operator, which assigns to every func-
tion an ∈ AR, defined on the real numbers, and with values in a ring A. Then

∆k
can =

k∑
j=0

(
k

j

)
(−1)k−jan+jc

for some nonnegative integer k ∈ Z.



On p-adic Euler L-function of two variables 373

In particular, Fox [3, Lemma 5] derives the following congruence property of
〈a+ pt〉m by elementary means:

Lemma 2.5. Let a,m ∈ Z, with (a, p) = 1 and m ≥ 2, and let t ∈ Cp such that
|t|p ≤ 1. Then

〈a+ pt〉m − 1 ≡ m(〈a〉 − 1 + pω−1(a)t) (mod m(m− 1)p2Zp[t]).

Theorem 2.6. If c, k, n ≥ 1 and t ∈ Cp such that |t|p ≤ 1. Then

c−kp−k∆k
c εn,χ(t) ∈ Zp[χ, t].

Proof. Let t ∈ Cp such that |t|p ≤ 1. An application of Theorem 2.3 and Lemma
2.4 to the sequence {∆k

c εn,χ(t)} yields

∆k
c εn,χ(t) = ∆k

cLp,E(1− n, t, χ) = lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉n,

where c, n, k ≥ 1. Note that

∆k
c 〈a+ pt〉n =

k∑
j=0

(
k

j

)
(−1)k−j〈a+ pt〉n+jc

= 〈a+ pt〉n
k∑
j=0

(
k

j

)
(−1)k−j〈a+ pt〉jc

= 〈a+ pt〉n(〈a+ pt〉c − 1)k,

so that,

∆k
c εn,χ(t) = ∆k

cLp,E(1− n, t, χ)

=

k∑
j=0

(
k

j

)
(−1)k−j lim

N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉n+jc

= lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉n(〈a+ pt〉c − 1)k.

(8)

By Lemma 2.5, we obtain (〈a+pt〉c−1)k ≡ 0 (mod ckpkZp[t]) and ∆k
c εn,χ(t) ≡ 0

(mod ckpkZp[χ, t]). �

Corollary 2.7. Let n′ ∈ Z such that n′ > n ≥ 1 and let t ∈ Cp with |t|p ≤ 1.
Then

∆k
c εn,χ(t) ≡ ∆k

c εn′,χ(t) (mod (n′ − n)ckpk+1Zp[χ, t]).



374 Min-Soo Kim

Proof. From (8), we have

∆k
c εn′,χ(t)−∆k

c εn,χ(t) = lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉n

× (〈a+ pt〉c − 1)k(〈a+ pt〉n
′−n − 1).

By Lemma 2.5, we obtain (〈a + pt〉c − 1)k(〈a + pt〉n′−n − 1) ≡ 0 (mod (n′ −
n)ckpk+1Zp[t]), and the result follows. �

We denote two particular subrings of Cp in the following manner

o = {t ∈ Cp : |t|p ≤ 1}, p = {t ∈ Cp : |t|p < 1}.
If t ∈ Cp such that |t|p ≤ |p|sp, then t ∈ pso for s ∈ Q, and we also write this as
t ≡ 0 (mod pso) as usual. Let

cn,χ(t) =

n∑
i=0

(
n

i

)
(−1)n−iεi,χ(t)

for all t ∈ Cp with |t|p ≤ 1. We now derive our bound on the magnitude of
cn,χ(t).

Lemma 2.8.

|cn,χ(t)|p ≤ |pn|p, n ≥ 0.

Proof. From the definition of εi,χ and (5), we have

cn,χ(t) =

n∑
i=0

(
n

i

)
(−1)n−i lim

N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)〈a+ pt〉i

= lim
N→∞

fpN∑
a=1

(a,p)=1

(−1)aχ(a)(〈a+ pt〉 − 1)n.

Since 〈a + pt〉 ≡ 1 (mod po) then (〈a + pt〉 − 1)n ≡ 0 (mod pno), we conclude
that

|cn,χ(t)|p = lim
N→∞

∣∣∣∣ fpN∑
a=1

(a,p)=1

(−1)aχ(a)(〈a+ pt〉 − 1)n
∣∣∣∣
p

= lim
N→∞

|pnθn(N, t)|p ≤ |pn|p,

because
fpN∑
a=1

(a,p)=1

(−1)aχ(a)(〈a+ pt〉 − 1)n = pnθn(N, t)

for some θn(N, t) with |θn(N, t)|p ≤ 1. This is the desired result. �
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Now we apply Theorem 1 in [4, p. 22] to the above sequences εn,χ(t) and
cn,χ(t), n ≥ 0, in Qp(χ, t) and for

r = |p|p < |p|1/(p−1)p .

This theorem shows that there exists a unique power series Aχ,t(x) ∈ Qp(χ, t)[[x]]

convergent for |ξ|p < |p|1/(p−1)p |p|−1p = |p|−(p−2)/(p−1)p which takes the prescribed
values at the nonnegative integers, that is,

Aχ,t(n) = εn,χ(t).

Denote by

Lp,E(s, t;χ) = Aχ,t(1− s).
We have the following theorem.

Theorem 2.9. Let χ be a Dirichlet character with odd conductor f. For each
t ∈ Cp, with |t|p ≤ 1, there exists a unique p-adic analytic function

Lp,E(s, t;χ) =

∞∑
n=0

(−1)nan(t)(s− 1)n, an(t) ∈ Qp(χ, t)

on {s ∈ Cp : |s− 1|p < p−(p−2)/(p−1)} such that

Lp,E(1− n, t;χ) = εn,χ(t), n ≥ 1.

3. Properties of Lp,E(s, t;χ)

This section will show some properties of the p-adic function Lp(s, t;χ) con-
structed above, including the reflection formula (see Theorem 3.3) and the func-
tional equation (see Theorem 3.4). And in what follows, let p be an odd prime
and χ a Dirichlet character with odd conductor f = fχ.

The polynomials En,χ(t) has the property that, for all n ≥ 0,

En,χ(−t) = (−1)n−1χ(−1)En,χ(t) (9)

if χ 6= 1. From (1), if χ = 1, we recover the original Euler polynomials, that is,
En,1(x) = En(x).

Lemma 3.1. For all n ∈ Z, n ≥ 0, we have

En,1(−t) = (−1)n−1En,1(t)− (−1)n−12tn.

Proof. The formula holds for n = 0 because E0,1(t) = 1. If n ≥ 1, then since
En,1(0) = 0 for even n ≥ 2, we may write (2) in the form

En,1(t) =

n∑
k=0

(
n

k

)
En−k,1(0)tk

=

n∑
k=0

n−k odd

(
n

k

)
En−k,1(0)tk + E0,1(0)tn.
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Any k such that n− k is odd must have the different parity as n. Hence

En,1(−t) = (−1)n−1
n∑
k=0

n−k odd

(
n

k

)
En−k,1(0)tk + (−1)nE0,1(0)tn

= (−1)n−1En,1(t)− (−1)n−12E0,1(0)tn

= (−1)n−1En,1(t)− (−1)n−12tn,

the lemma then follows. �

Lemma 3.2. For all n ∈ Z, n ≥ 0, we have

εn,χ(−t) = −χ(−1)εn,χ(t).

Proof. This is true for n = 0 since ε0,χ(−t) = −χ(−1)ε0,χ(t) and ε0,1(−t) =
−ε0,1(t). So we assume that n ≥ 1.

First we consider the cases of χn = 1. From Lemma 3.1, we obtain

εn,1(−t) = En,1(−pt)− pnEn,1(−t)
= (−1)n−1En,1(pt)− (−1)n−12(pt)n

− pn((−1)n−1En,1(t)− (−1)n−12tn)

= (−1)n−1(En,1(pt)− pnEn,1(t))

= (−1)n−1εn,1(t).

Therefore the lemma holds for χn = 1.
Next we assume that χn 6= 1. Then, from (9), we have

εn,χ(−t) = En,χn(−pt)− χn(p)pnEn,χn(−t)
= (−1)n−1χn(−1)En,χn(pt)− χn(p)pn(−1)n−1χn(−1)En,χn(t)

= (−1)n−1χn(−1)(En,χn(pt)− χn(p)pnEn,χn(t))

= (−1)n−1χn(−1)εn,χ(t)

= −χ(−1)εn,χ(t),

since χn(−1) = (−1)nχ(−1). Thus the lemma also holds for χn 6= 1. This
completes the proof of our assertion. �

Theorem 3.3 (Reflection formula). Let s ∈ D and t ∈ Cp such that |t|p ≤ 1.
Then

Lp,E(s,−t;χ) = −χ(−1)Lp,E(s, t;χ).

Proof. From Lemma 3.2, we have εn,χ(−t) = −χ(−1)εn,χ(t), then using Theo-
rem 2.9, we see this implies Lp,E(s,−t;χ) = −χ(−1)Lp,E(s, t;χ). �

Now, by (1) we obtain

(−1)m−1En,χ(t+mf) + En,χ(t) = 2

mf∑
a=1

(−1)aχ(a)(t+ a)n, (10)
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where χ is the Dirichlet character with odd conductor f = fχ and m ≥ 1. For
the character χ, let F0 = l.c.m(f, p). Then we have χn | F0 for each n ∈ Z. We
also denote F a positive multiple of F0.

Theorem 3.4 (Functional equation). Let s ∈ D and t ∈ Cp such that |t|p ≤ 1.
Then we have

Lp,E(s, t+ F ;χ) + Lp,E(s, t;χ) = 2

pF∑
a=1

(p,a)=1

(−1)aχ(a)〈a+ pt〉1−s. (11)

Proof. Let t ∈ Cp such that |t|p ≤ 1, and let n ≥ 1. Then from Theorem 2.3, we
have

Lp,E(1− n, t+ F ;χ) + Lp,E(1− n, t;χ) = εn,χ(t+ F ) + εn,χ(t). (12)

By using (3) and (10), we have

εn,χ(t+ F ) + εn,χ(t) = En,χn(p(t+ F ))− χn(p)pnEn,χn(t+ F )

+ En,χn(pt)− χn(p)pnEn,χn(t)

= En,χn(p(t+ F )) + En,χn(pt)

− χn(p)pn(En,χn(t+ F ) + En,χn(t))

= 2

pF∑
a=1

(−1)aχn(a)(pt+ a)n

− χn(p)pn2

F∑
a=1

(−1)aχn(a)(t+ a)n.

(13)

We also note that

χn(p)pn2

F∑
a=1

(−1)aχn(a)(t+ a)n = 2

F∑
a=1

(−1)paχn(pa)(pt+ pa)n

= 2

pF∑
a=1
p|a

(−1)aχn(a)(pt+ a)n.

(14)

Substitution the above equality into (13), we have

εn,χ(t+ F ) + εn,χ(t) = 2

pF∑
a=1

(−1)aχn(a)(pt+ a)n − 2

pF∑
a=1
p|a

(−1)aχn(a)(pt+ a)n

= 2

pF∑
a=1

(p,a)=1

(−1)aχn(a)(pt+ a)n.
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From which, by using (12), we conclude that for n ≥ 1,

Lp,E(1− n, t+ F ;χ) + Lp,E(1− n, t;χ) = 2

pF∑
a=1

(p,a)=1

(−1)aχn(a)(pt+ a)n

= 2

pF∑
a=1

(p,a)=1

(−1)aχ(a)〈a+ pt〉n,

since χn = χω−n. Thus Theorem 3.4 holds for all s = 1− n, where n ≥ 1. Since
the negative integers have 0 as a limit point, using the uniqueness property for
power series in [4, p. 19, Lemma 1], we have shown that Theorem 3.4 holds for
all s in any neighborhood about 0 common to the domain of the functions on
either side of (11).

It is obvious that the definition domains in the variable s of the functions on
the left hand-side of (11) contain D. For t ∈ Cp, |t|p ≤ 1, the same argument as
the proof of Theorem 4.8 of [2] shows that

2

pF∑
a=1

(p,a)=1

(−1)aχ(a)〈a+ pt〉1−s

is convergence as a power series of s, whenever s ∈ D. Therefore, the definition
domains of the functions on either side of (11) contain D, and our theorem
holds. �
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able III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191–268, Lecture Notes

in Math.350, Springer, Berlin, 1973.

23. H. Tsumura, On a p-adic interpolation of the generalized Euler numbers and its applica-
tions, Tokyo J. Math. 10 (1987), 281–293.

24. L.C. Washington, A note on p-adic L-functions, J. Number Theory 8 (1976) 245–250.

25. L.C. Washington, Introduction to Cyclotomic Fields, Second Edition, Graduate Texts in
Mathematics 83, Springer, 1996.

Min-Soo Kim received Ph.D. degree from Kyungnam University. His main research area
is analytic number theory. Recently, his main interests focus on p-adic analysis and zeta

functions, Bernoulli and Euler numbers and polynomials.

Division of Mathematics, Science, and Computers, Kyungnam University, 7(Woryeong-
dong) kyungnamdaehak-ro, Masanhappo-gu, Changwon-si, Gyeongsangnam-do 51767, Ko-

rea
e-mail: mskim@kyungnam.ac.kr




