DOI QR코드

DOI QR Code

Historical Background for Derivation of the Differential Equation mẍ+kx = f(t)

미분방정식 mẍ + kx = f(t)의 역사적 유도배경

  • 박보용 (인천대학교 기계시스템공학부)
  • Received : 2010.12.09
  • Accepted : 2011.03.23
  • Published : 2011.04.20

Abstract

This paper presents a historical study on the derivation of the differential equation of motion for the single-degree-of-freedom m-k system with the harmonic excitation. It was Euler for the first time in the history of vibration theory who tackled the equation of motion for that system analytically, then gave the solution of the free vibration and described the resonance phenomena of the forced vibration in his famous paper E126 of 1739. As a result of the chronological progress in mechanics like pendulum condition from Galileo to Euler, the author asserts two conjectures that Euler could apply to obtain the equation of motion at that time.

Keywords

Acknowledgement

Grant : 에너지 원리를 이용한 안정도 이론의 발달

Supported by : 인천대학교

References

  1. Euler, L., 1739, De Novo Genere Oscillationvm(On a New Kind of Oscillations), Comm. Acad. Sci. Petrop.11, E126, pp. 128-149.
  2. Galilei, G., 1638, Dialogues Concerning Two New Sciences(Discorsi e Dimostrazioni Mathematiche, intorno a due Nuoue Scienze), In Leida Appresso gli Elseviriri.
  3. Descartes, R., 1644, Principia Philosiphiae (Principles of Philosophy).
  4. Terrall, M., 2004, Vis Viva Revisited, Hist. Sci, xlii, pp. 189-209.
  5. Euler, L., 1750, De Couverte D’un Nouveau Principe de Mecanique(Discovery of a New Principle in Mechanics), (publ. 1752), Opera Omnia, Ser. 2, V. E177, pp. 81-108.
  6. Benvenuto, E., 1991, An Introduction to the History of Structural Mechanics, Vol. I : Statics and Resistance of Solids, Springer-Verlag.
  7. Hort, W., 1910, Technische Schwingungslehre, Verlag von Julius Springer.
  8. Routh, E. J., 1897, The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies, 6th ed., Macmillan Co.(German ed. in 1898).
  9. Ravetz, J., 1961, The Representation of Physics Quantities in Eighteenth-century Mathematical Physics, Isis, LII, pp. 7-20.
  10. Euler, L., 1736, Mechanica, Vol. 1,(Translated and Annotated by I. Bruce), E15, E16.
  11. Katz, V., 1998, A History of Mathematics an Introduction, 2.ed., Addison Wesley.
  12. Mikhailov, G. K., Schmidt. G., Sedov, L. I., 1984, Leonhard Euler und das Entstehen der Klassischen Mechanik, Z. Angew. Math. U. Mech., Bd. 64, H.2, pp. 73-82. https://doi.org/10.1002/zamm.19840640202
  13. Truesdell, C., 1960, The Rational Mechanics of Flexible or Elastic Bodies, Birkhauser Verlag.
  14. Huygens, C., 1673, Horologivm Oscillatorivm.
  15. Chapman, A., 2005, England’s Leonardo : Robert Hooke and the Seventeenth-century Scientific Revolution, IoP.
  16. Moyer, A. E., 1977, Robert Hooke’s Ambiguous Presentation of ‘Hooke’s Law’, Isis, 68, No. 242, pp. 266-275. https://doi.org/10.1086/351771
  17. Cohen, I. B., Whitman, A., 1999, Isaac Newton The Pricipia Mathematical Principles of Natural Philosophy A New Translation, Univ. California Press.
  18. Hankins, T. L., 1990, Jean d’Alembert Science and Enlightenment, Gordon and Breach.
  19. Burton, D. M., 2003, The History of Mathematics An Introduction, 5th ed., McGraw Hill.
  20. Boyer, C. B., Merzbach, U. C., 1991, A History of Mathematics, John Wiley & Sons.
  21. Szabo, I., 1987, Geschichte der Mechanischen Prinzipien, Birkhauser Verlag.
  22. Truesdell, C., 1968, Essays in the History of Mechanics, Springer-Verlag.
  23. Cannon, J. T., Dostrovsky, S., 1981, The Evolution of Dynamics : Vibration Theory from 1678 to 1742, Springer-Verlag.
  24. Park, B. Y., 2007, Evolution of Vibration Theory in the Eighteenth Century, J. of the Korea Management Engineers Society, Vol. 12, No. 3, pp. 29-48.
  25. Cohen, I. B., 1980, The Newtonian Revolution with Illustrations of the Transformation of Scientific Ideas, Cambridge University Press.
  26. Bogolyubov, N. N., et al., 2007, Euler and Modern Science, The Mathematical Association of America.
  27. Hepburn, B. S., 2007, Equilibrium and Explanation in 18th Century Mechanics, Diss., Univ. of Pittsburgh.
  28. Fraser, C. G., 1997, Calculus and Analytical Mechanics in the Age of Enlightenment, Variorum.
  29. Sandifer, C. E., 2007, The Early Mathematics of Leonhard Euler, The Mathematical Association of America.