• 제목/요약/키워드: Ethylene Oxide

검색결과 482건 처리시간 0.035초

전기방사를 이용한 조직공학용 실크 피브로인 나노 섬유 지지체의 기공 크기 조절 (Controlling Pore Size of Electrospun Silk Fibroin Scaffold for Tissue Engineering)

  • 조세연;박현호;진형준
    • 폴리머
    • /
    • 제36권5호
    • /
    • pp.651-655
    • /
    • 2012
  • 인체의 여러 조직 및 장기를 재생하고자 하는 조직공학에 있어 중요한 요소 중의 하나인 지지체는 세포외기질을 모방한 것으로 손상된 조직을 재생하는데 있어 기본 형틀의 역할을 수행하며, 세포의 분화와 성장 그리고 영양분과 산소의 원활한 공급을 위한 상호 연결된 다공성 구조가 필요하다. 본 연구에서는 실크 피브로인의 조직공학용 지지체로의 응용가능성 향상을 위하여 폴리에틸렌옥사이드를 사용한 보다 넓은 기공과 다공의 연결성을 가지는 실크 피브로인 나노 섬유 지지체를 제조하였다.

개에서 동결건조한 돼지 치밀골의 Chloroform-methanol Solution 축출시간에 따른 이식골의 변화 (Changes of Xenograft According to Extracted Time with Chloroform-methanol Solution in freeze-dried Cortical bone of Pig Transplanted to Dogs)

  • 최인혁;이미진;최은경;정인성;최성진;김남수
    • 한국임상수의학회지
    • /
    • 제20권1호
    • /
    • pp.91-95
    • /
    • 2003
  • It has been known that periods of absorption varies allografts or xenografts of transplantations of freeze-dried cortical bone(FDCB). In this study changes of absorption of FDCB in xenograft transplantations were evaluated according to extracted time with chloroform-methanol solution(CM sol.). The FDCB from pig was removed soft tissue by surgical knife. Fat of the FDCB was removed with treatments of CM sol. for 2, 6, and 10 days, then the treated FDCB was freeze-dried at $-80^{\circ}C$ and sterilized with ethylene oxide gas. The FDCB was transplanted to fifteen millimeter artificial-defected regions of 6 dogs on fibular diaphyses. This was biweekly examined by radiograph for 18 weeks. In result new bone formation with FDCB treated for 6 days was higher than the other bones treated for 2 and 10 days. Duration of absorption with FDCB treated for 6 days was longer than the others. The remain with FDCB treated for 10 days was more than the others.

수용액 및 비수용액에서 양극산화법으로 형성된 TiO2 나노튜브의 구조 연구 (Morphological Studies on TiO2 Nanotubes Formed by Anodizing in Aqueous and Non-Aqueous Solutions)

  • 김병조;문성모;정용수;김병관
    • 한국표면공학회지
    • /
    • 제43권4호
    • /
    • pp.180-186
    • /
    • 2010
  • $TiO_2$ nanotubes were formed on Ti by anodizing in 1 M $H_3PO_4$ + 0.3 M HF and 0.1 M $NH_4F$ + 2% $H_2O$ in ethylene glycol, and their surface and cross-sectional morphologies were observed using FE-SEM as a function of anodizing time and applied voltage. The cross-section of the $TiO_2$ nanotubes was readily observed from the small pieces of nanotubes remaining near the scratch lines after scratching of the anodized surface. $TiO_2$ nanotubes was observed to grow faster and thicker in non-aqueous solution than in aqueous solution. Diameter of $TiO_2$ nanotubes was proportional to the applied voltage, irrespective of the type of the electrolyte, and it is recommended to use non-aqueous solutions for the preparation of larger diameter of $TiO_2$ nanotubes.

Optimization of Aqueous Nano Ceramic Ink and Printing Characterization for Digital Ink-Jet Printing

  • Kwon, Jong-Woo;Sim, Hee-Seok;Lee, Jong-Heun;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho;Kim, Ung-Soo
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.478-483
    • /
    • 2017
  • The advantage of ceramic ink-jet printing technology is the accurate and fast printing process of digital images for various products. For digital ink-jet printing applications, ceramic ink requires proper viscosity and surface tension, along with dispersion stability of the inorganic pigments. The purpose of this study is the formulation of an environment-friendly ceramic ink with a water-based system; using nano-sized $CoAl_2O_4$ pigment as a raw material, ink should have dispersion stability to prevent nozzle clogging during ink-jet printing process. In addition, the surface tension of the ceramic ink was optimized with the polysiloxane surfactant according to the surface tension requirement (20 - 45 mN/m) for ceramic ink-jet printing; by adjusting the viscosity with poly ethylene oxide, jetting behavior of the ceramic ink was investigated according to changes in the physical features through drop watcher measurement.

Capillary Electrophoresis of Single-stranded DNA

  • Choi, Hyun-Ju;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.943-947
    • /
    • 2003
  • We have studied the migration behavior of single-stranded DNA using capillary gel electrophoresis under various conditions. It was found that optimum electric fields should be less than 150 V/cm for the good tradeoff between the separation time and the resolution. It seems that the gel matrix with the combination of different polymer average molecular weights is important to extend the maximum readable DNA bases. The total gel concentration less than 3.1% in the mixed gel system showed good separation efficiency up to 600 bases. The best result was obtained with the poy(ethylene)oxide (PEO) gel concentration of 1.2% of Mr 8,000,000 and 1.8% of Mr 600,000. We observed that the capillary length between 50 cm to 100 cm (effective length) should be employed for the optimization between the total DNA migration time and the maximum readable length. A trizma base-boric acid-ethlyenediaminetetraacetic acid (EDTA) (TBE) buffer was commonly used for DNA sequencing, but we found that 3-[tris(hydroxymethyl)methyl amino]-1-propane sulfonic acid (TAPS) buffer worked as well for the single-stranded DNA separation. Especially, TAPS buffer showed a good resolution for very short DNA bases (1 to 30 bases).

Fast High-throughput Screening of the H1N1 Virus by Parallel Detection with Multi-channel Microchip Electrophoresis

  • Zhang, Peng;Park, Guenyoung;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권4호
    • /
    • pp.1082-1086
    • /
    • 2014
  • A multi-channel microchip electrophoresis (MCME) method with parallel laser-induced fluorescence (LIF) detection was developed for rapid screening of H1N1 virus. The hemagglutinin (HA) and nucleocapsid protein (NP) gene of H1N1 virus were amplified using polymerase chain reaction (PCR). The amplified PCR products of the H1N1 virus DNA (HA, 116 bp and NP, 195 bp) were simultaneously detected within 25 s in three parallel channels using an expanded laser beam and a charge-coupled device camera. The parallel separations were demonstrated using a sieving gel matrix of 0.3% poly(ethylene oxide) ($M_r$ = 8,000,000) in $1{\times}$ TBE buffer (pH 8.4) with a programmed step electric field strength (PSEFS). The method was ~20 times faster than conventional slab gel electrophoresis, without any loss of resolving power or reproducibility. The proposed MCME/PSEFS assay technique provides a simple and accurate method for fast high-throughput screening of infectious virus DNA molecules under 400 bp.

Raman and Fluorescence Studies of Thermotropic Liquid-Crystalline Oligomers with Different Type of Coils

  • Chae, Jong-Bok;Yu, Soo-Chang;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.193-199
    • /
    • 2007
  • Raman and fluorescence spectroscopies were employed to study the coil effects on the intermolecular structure of a rod-coil liquid crystalline (LC) oligomer, the esterification products of ethyl 4-[4'-oxy-4-biphenylcarbonyloxy]- 4'-biphenylcarboxylate with poly(propylene)oxides (PPO) (DP=12) and poly(ethylene oxide)s (PEO) (DP=12). Three different vibrational modes (carbonyl, aromatic C-H, and aromatic C=C) obtained from the Raman experiment at variable temperature indicate that PPO and PEO coils induce the hydrogen bonding in a different manner. Further information about the micro-environment around the mesogenic unit obtained by fluorescence excitation spectra of P12-4 (LC with PPO coil) and 12-4 (LC with PEO coil) suggests that the mesogenic unit of P12-4 is quite different from that of 12-4 in intermolecular structure. This study supports the results obtained only from Raman spectroscopy, providing more accurate information about the intermolecular structural changes of liquid crystalline polymers at a molecular level during the phase transitions.

Synthesis of Mesoporous TiO2 and Its Application to Photocatalytic Activation of Methylene Blue and E. coli

  • Kim, Eun-Young;Kim, Dong-Suk;Ahn, Byung-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.193-196
    • /
    • 2009
  • Mesoporous $TiO_2$ material was synthesized from diblock copolymers with ethylene oxide chains via a sol-gel process in aqueous solution. The properties of these materials were characterized with several analytical techniques including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis. The mesoporous $TiO_2$ materials calcined at 400${^{\circ}C}$ were found to have specific surface areas 212 $m^2g^-1$, average pore sizes 6.2 nm, and their average crystal sizes were found to be 8.2 nm. The photocatalytic activity of mesoporous $TiO_2$ was characterized with UV-Vis spectroscopy, and it was found to be 5.8 times higher than that of Degussa P25 $TiO_2$ (P25). For deactivation of Escherichia coli, mesoporous $TiO_2$ also has high photocatalytic inactivity than that of P25. Such a high photocatalytic activity is explained with large surface area and small crystal size with wormhole-like mesoporous structure.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • 제12권3호
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.