Browse > Article
http://dx.doi.org/10.5695/JKISE.2010.43.4.180

Morphological Studies on TiO2 Nanotubes Formed by Anodizing in Aqueous and Non-Aqueous Solutions  

Kim, Byung-Jo (Korea Institute of Materials Science)
Moon, Sung-Mo (Korea Institute of Materials Science)
Jeong, Yong-Soo (Korea Institute of Materials Science)
Kim, Byung-Kwan (Department of Chemical Engineering, Changwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.43, no.4, 2010 , pp. 180-186 More about this Journal
Abstract
$TiO_2$ nanotubes were formed on Ti by anodizing in 1 M $H_3PO_4$ + 0.3 M HF and 0.1 M $NH_4F$ + 2% $H_2O$ in ethylene glycol, and their surface and cross-sectional morphologies were observed using FE-SEM as a function of anodizing time and applied voltage. The cross-section of the $TiO_2$ nanotubes was readily observed from the small pieces of nanotubes remaining near the scratch lines after scratching of the anodized surface. $TiO_2$ nanotubes was observed to grow faster and thicker in non-aqueous solution than in aqueous solution. Diameter of $TiO_2$ nanotubes was proportional to the applied voltage, irrespective of the type of the electrolyte, and it is recommended to use non-aqueous solutions for the preparation of larger diameter of $TiO_2$ nanotubes.
Keywords
$TiO_2$ Nanotube; Anodic oxidation; Morphology of oxide film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Tsuchiya, P. Schmuki, Electrochem. Commun., 7 (2005) 49.   DOI
2 I. Sieber, H. Hildeberand, A. Friedrich, P. Schmuki, Electrochem. Commun., 7 (2005) 7.
3 H. Tsuchiya, P. Schmuki, Electrochem. Commun. 6 (2005) 1131.
4 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 16 (2001) 3331.   DOI
5 H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, P. Schmuki, Small 1 (2005) 722.   DOI
6 H. Tsuchiya, J. M. Macak, L. Taveira, P. Schmuki, Chem. Phys. Lett., 410 (2005) 188.   DOI
7 H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun., 7 (2005) 295.   DOI
8 H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J. Phys., Chem. C, 111 (2007) 7235.   DOI
9 D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 16 (2001) 3331.   DOI
10 G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol Energy Mater Sol Cells, 90 (2006) 2011.   DOI
11 T. J. Webster, J. U. Ejiofor, Biomaterials, 25 (2004) 4731.   DOI
12 K. Anselme, M. Bigerelle, J. Mater. Sci. Mater. Med., 17 (2006) 471.   DOI
13 C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, J. Chem. Rev., 105 (2005) 1025.   DOI
14 A. Mils, G. Hill, S. Bhopal, I. P. Parkin, S. A. O'Meill, J. Photochem. Photobiol. A 160 (2003) 185.   DOI
15 C. H. Kwon, J. H. Kim, I. S. Jung, H. Shin, K. H. Yoon, J. Ceramics Int., 29 (2003) 851.   DOI
16 J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, J. Biomed. Mater. Res., 75A (2005) 928.   DOI
17 A. Rothschild, F. Edelman, Y. Komen, F. Cosandey, Sens. Actuat. B 67 (2000) 282.   DOI