Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.5.651

Controlling Pore Size of Electrospun Silk Fibroin Scaffold for Tissue Engineering  

Cho, Se-Youn (Department of Polymer Science and Engineering, Inha University)
Park, Hyun-Ho (Department of Polymer Science and Engineering, Inha University)
Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
Publication Information
Polymer(Korea) / v.36, no.5, 2012 , pp. 651-655 More about this Journal
Abstract
Considerable effort has been directed toward the use of silk fibroin as a biotechnological material in biomedical applications on account of its excellent biodegradability, biocompatibility, and unique mechanical properties. For use in tissue engineering, it is very important to design and control the pore architecture of polymeric scaffolds, which provide the vital framework for seeded cells to organize into functioning tissue. In the present study, a silk fibroin scaffold with controlled interconnectivity and pore size was prepared using an electrospinning method with poly(ethylene oxide).
Keywords
silk fibroin; tissue engineering; 3D porous scaffolds; pore architecture; electrospinning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Yang, K. F. Leong, and Z. Du, Tissue Eng., 7, 679 (2001).   DOI   ScienceOn
2 J. Zeltinger, J. K. Sherwood, and D. A. Graham, Tissue Eng., 7, 557 (2001).   DOI   ScienceOn
3 A. G. Mikos and J. S. Temenoff, Electron. J. Biotechnol., 3, 1 (2000).
4 N. Annabi, J. W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, and F. Dehghani, Tissue Eng., 16, 371 (2010).   DOI   ScienceOn
5 K. Whang, K. E. Healy, D. R. Elenz, E. K. Nam, D. C. Tsai, C. H. Thomas, G. Nuber, R. Glorieux, R. Travers, and S. M. Sprague, Tissue Eng., 5, 35 (1999).   DOI   ScienceOn
6 S. M. Jo, W. S. Lee, and S. W. Chun, Fiber Tech. Ind., 6, 112 (2002).
7 X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramacrishna, Biomaterials, 25, 1883 (2004).   DOI   ScienceOn
8 D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).   DOI   ScienceOn
9 S. Ramakrishna, K. Fujuhara, W. E. Tae, T. C. Lim, and Z. Ma, World Scientific, 7, 17 (2005).
10 J. Magoshi, M. Mizuide, and Y. Magoshi, J. Polym. Sci., 17, 515 (1979).
11 M. Ishida, T. Asakura, M. Yoko, and H. Saito, Macromolecules, 23, 88 (1990).   DOI
12 S. H. Yoon, S. J. Myung, M. Kang, and H. J. Jin, Poymer Science and Technology, 16, 577 (2005)
13 B. Duan, C. Dong, X. Yuan, and K. Yao, J. Biomater. Sci. Polym. Edn., 15, 797 (2004).   DOI   ScienceOn
14 J. S. Chen, G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, and D. L. Kaplan, J. Biomed. Mater. Res. Part A, 67, 559 (2003).
15 Z. Shao and F. Vollrath, Nature, 418, 741 (2002).   DOI   ScienceOn
16 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).   DOI   ScienceOn
17 H. J. Jin, J. S. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004).   DOI   ScienceOn