DOI QR코드

DOI QR Code

Synthesis of Mesoporous TiO2 and Its Application to Photocatalytic Activation of Methylene Blue and E. coli

  • Published : 2009.01.20

Abstract

Mesoporous $TiO_2$ material was synthesized from diblock copolymers with ethylene oxide chains via a sol-gel process in aqueous solution. The properties of these materials were characterized with several analytical techniques including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), wide angle X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis. The mesoporous $TiO_2$ materials calcined at 400${^{\circ}C}$ were found to have specific surface areas 212 $m^2g^-1$, average pore sizes 6.2 nm, and their average crystal sizes were found to be 8.2 nm. The photocatalytic activity of mesoporous $TiO_2$ was characterized with UV-Vis spectroscopy, and it was found to be 5.8 times higher than that of Degussa P25 $TiO_2$ (P25). For deactivation of Escherichia coli, mesoporous $TiO_2$ also has high photocatalytic inactivity than that of P25. Such a high photocatalytic activity is explained with large surface area and small crystal size with wormhole-like mesoporous structure.

Keywords

References

  1. Huang, Z.; Maness, P. C.; Blake, D. M.; Wolfrum, E. J.; Smolinksi, S. L.; Jacoby, W. A. J. Photochem. Photobiol. A 2000, 130, 163-170 https://doi.org/10.1016/S1010-6030(99)00205-1
  2. Cho, M.; Chung, H.; Choi, W.; Yoon, J. Water Res. 2004, 38, 1069-1077 https://doi.org/10.1016/j.watres.2003.10.029
  3. Fu, G.; Vary, P. S.; Lin, C. T. J. Phys. Chem. B 2005, 109, 8889-8898 https://doi.org/10.1021/jp0502196
  4. Calleja, G.; Serrano, D. P.; Sanz, R.; Pizzaro, P.; Garcia, A. Ind. Eng. Chem. Res. 2004, 43, 2485-2492 https://doi.org/10.1021/ie030646a
  5. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96 https://doi.org/10.1021/cr00033a004
  6. Stone, V. F.; Davis, R. J. Chem. Mater. 1998, 10, 1468-1474 https://doi.org/10.1021/cm980050r
  7. Antonelli, D. M.; Ying, J. Y. Angew. Chem. Int. Ed. Engl. 1995, 34, 2014-2017. https://doi.org/10.1002/anie.199520141
  8. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710-712 https://doi.org/10.1038/359710a0
  9. Zhang, Y.; Weidenkaff, A.; Reller, A. Mater. Lett. 2002, 54, 375-381 https://doi.org/10.1016/S0167-577X(01)00597-3
  10. Zhan, S.; Chen, D.; Jiao, X.; Tao, C. J. Phys. Chem. B 2006, 110, 1199-11204
  11. Peng, T.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. J. Phys. Chem. B 2005, 109, 4947-4952 https://doi.org/10.1021/jp044771r
  12. Kim, D. S.; Kwak, S. Y. Appl. Catal. A 2007, 323, 110-118 https://doi.org/10.1016/j.apcata.2007.02.010
  13. Yanagida, H.; Takata, M.; Nagai, M. J. Am. Cerm. Soc. 1981, 64, 34-35 https://doi.org/10.1111/j.1151-2916.1981.tb09554.x
  14. Zhou, Y.; Antonietti, M. J. Am. Chem. Soc. 2003, 125, 14960 https://doi.org/10.1021/ja0380998
  15. Yang, H. G.; Zeng, H. C. J. Phys. Chem. B 2004, 108, 3492 https://doi.org/10.1021/jp0377782
  16. Ma, Y.; Yao, J. Chemosphere 1999, 38, 2407 https://doi.org/10.1016/S0045-6535(98)00434-2

Cited by

  1. Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba1-xPr2x/3)WO4 crystals synthesized by the coprecipitation method vol.2, pp.16, 2012, https://doi.org/10.1039/c2ra20266b
  2. Characterization and evaluation of the photocatalytic properties of wormhole-like mesoporous silica incorporating TiO2, prepared using different hydrothermal and calcination temperatures vol.38, pp.8, 2012, https://doi.org/10.1007/s11164-012-0498-9
  3. Mild yet phase-selective preparation of TiO2 nanoparticles from ionic liquids – a critical study vol.5, pp.17, 2013, https://doi.org/10.1039/c3nr00824j
  4. Physicochemical properties affect the synthesis, controlled delivery, degradation and pharmacokinetics of inorganic nanoporous materials vol.10, pp.19, 2015, https://doi.org/10.2217/nnm.15.133
  5. Green synthesis of photoactive nanocrystalline anatase TiO2 in recyclable and recoverable acidic ionic liquid [Bmim] HSO4 vol.50, pp.6, 2015, https://doi.org/10.1007/s10853-014-8799-6
  6. Controlled nanostructuring of TiO2 nanoparticles: a sol–gel approach vol.74, pp.2, 2015, https://doi.org/10.1007/s10971-014-3557-4
  7. Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP08041J
  8. Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity vol.19, pp.2, 2017, https://doi.org/10.1515/pjct-2017-0028
  9. as an immobilized photocatalyst in a continuous-flow microreactor vol.19, pp.8, 2017, https://doi.org/10.1039/C7GC00497D
  10. nanoparticles and their photocatalytic activities vol.7, pp.76, 2017, https://doi.org/10.1039/C7RA08187A
  11. Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity vol.81, pp.3, 2017, https://doi.org/10.1007/s10971-016-4228-4
  12. Transition metals (Mn, Ni, Co) doping in TiO2 nanoparticles and their effect on degradation of diethyl phthalate pp.1735-2630, 2017, https://doi.org/10.1007/s13762-017-1573-y
  13. Disinfection of water using Pt- and Ag-doped TiO2photocatalysts vol.33, pp.13, 2012, https://doi.org/10.1080/09593330.2011.641590
  14. Effect of the Amount of Water in the Synthesis of B-TiO2: Orange II Photodegradation vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/721216
  15. Organically modified titania nanoparticles for sustained drug release applications vol.456, pp.None, 2009, https://doi.org/10.1016/j.jcis.2015.06.006
  16. The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants vol.4, pp.7, 2009, https://doi.org/10.1016/j.heliyon.2018.e00681
  17. Micro-kinetic modelling of photocatalytic CO2 reduction over undoped and N-doped TiO2 vol.10, pp.6, 2009, https://doi.org/10.1039/c9cy02443c
  18. Synthesis and characterisation of the mesoporous ZnO-TiO2 nanocomposite; Taguchi optimisation and photocatalytic methylene blue degradation under visible light vol.35, pp.5, 2009, https://doi.org/10.1080/10667857.2019.1678087