DOI QR코드

DOI QR Code

Morphological Studies on TiO2 Nanotubes Formed by Anodizing in Aqueous and Non-Aqueous Solutions

수용액 및 비수용액에서 양극산화법으로 형성된 TiO2 나노튜브의 구조 연구

  • 김병조 (한국기계연구원 부설 재료연구소) ;
  • 문성모 (한국기계연구원 부설 재료연구소) ;
  • 정용수 (한국기계연구원 부설 재료연구소) ;
  • 김병관 (창원대학교 화공시스템공학과)
  • Received : 2010.08.06
  • Accepted : 2010.08.30
  • Published : 2010.08.31

Abstract

$TiO_2$ nanotubes were formed on Ti by anodizing in 1 M $H_3PO_4$ + 0.3 M HF and 0.1 M $NH_4F$ + 2% $H_2O$ in ethylene glycol, and their surface and cross-sectional morphologies were observed using FE-SEM as a function of anodizing time and applied voltage. The cross-section of the $TiO_2$ nanotubes was readily observed from the small pieces of nanotubes remaining near the scratch lines after scratching of the anodized surface. $TiO_2$ nanotubes was observed to grow faster and thicker in non-aqueous solution than in aqueous solution. Diameter of $TiO_2$ nanotubes was proportional to the applied voltage, irrespective of the type of the electrolyte, and it is recommended to use non-aqueous solutions for the preparation of larger diameter of $TiO_2$ nanotubes.

Keywords

References

  1. H. Tsuchiya, P. Schmuki, Electrochem. Commun. 6 (2005) 1131.
  2. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, P. Schmuki, Small 1 (2005) 722. https://doi.org/10.1002/smll.200400163
  3. H. Tsuchiya, J. M. Macak, L. Taveira, P. Schmuki, Chem. Phys. Lett., 410 (2005) 188. https://doi.org/10.1016/j.cplett.2005.05.065
  4. H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun., 7 (2005) 295. https://doi.org/10.1016/j.elecom.2005.01.003
  5. H. Tsuchiya, P. Schmuki, Electrochem. Commun., 7 (2005) 49. https://doi.org/10.1016/j.elecom.2004.11.004
  6. I. Sieber, H. Hildeberand, A. Friedrich, P. Schmuki, Electrochem. Commun., 7 (2005) 7.
  7. J. M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, P. Schmuki, J. Biomed. Mater. Res., 75A (2005) 928. https://doi.org/10.1002/jbm.a.30501
  8. A. Rothschild, F. Edelman, Y. Komen, F. Cosandey, Sens. Actuat. B 67 (2000) 282. https://doi.org/10.1016/S0925-4005(00)00523-2
  9. A. Mils, G. Hill, S. Bhopal, I. P. Parkin, S. A. O'Meill, J. Photochem. Photobiol. A 160 (2003) 185. https://doi.org/10.1016/S1010-6030(03)00206-5
  10. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Sol Energy Mater Sol Cells, 90 (2006) 2011. https://doi.org/10.1016/j.solmat.2006.04.007
  11. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 16 (2001) 3331. https://doi.org/10.1557/JMR.2001.0457
  12. T. J. Webster, J. U. Ejiofor, Biomaterials, 25 (2004) 4731. https://doi.org/10.1016/j.biomaterials.2003.12.002
  13. K. Anselme, M. Bigerelle, J. Mater. Sci. Mater. Med., 17 (2006) 471. https://doi.org/10.1007/s10856-006-8475-8
  14. C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, J. Chem. Rev., 105 (2005) 1025. https://doi.org/10.1021/cr030063a
  15. C. H. Kwon, J. H. Kim, I. S. Jung, H. Shin, K. H. Yoon, J. Ceramics Int., 29 (2003) 851. https://doi.org/10.1016/S0272-8842(03)00019-1
  16. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J. Phys., Chem. C, 111 (2007) 7235. https://doi.org/10.1021/jp070273h
  17. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater. Res., 16 (2001) 3331. https://doi.org/10.1557/JMR.2001.0457