• Title/Summary/Keyword: Equations

Search Result 17,631, Processing Time 0.037 seconds

NON-ITERATIVE DOMAIN DECOMPOSITION METHOD FOR THE CONVECTION-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • This paper proposes a numerical method based on domain decomposition to find approximate solutions for one-dimensional convection-diffusion equations with Neumann boundary conditions. First, the equations are transformed into convection-diffusion equations with Dirichlet conditions. Second, the author introduces the Prediction/Correction Domain Decomposition (PCDD) method and estimates errors for the interface prediction scheme, interior scheme, and correction scheme using known error estimations. Finally, the author compares the PCDD algorithm with the fully explicit scheme (FES) and the fully implicit scheme (FIS) using three examples. In comparison to FES and FIS, the proposed PCDD algorithm demonstrates good results.

CLASSES OF HIGHER ORDER CONVERGENT ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS

  • FAROOQ AHMED SHAH
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.3_4
    • /
    • pp.177-189
    • /
    • 2024
  • In this paper, we suggest and analyze new higher order classes of iterative methods for solving nonlinear equations by using variational iteration technique. We present several examples to illustrate the efficiency of the proposed methods. Comparison with other similar methods is also given. New methods can be considered as an alternative of the existing methods. This technique can be used to suggest a wide class of new iterative methods for solving nonlinear equations.

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

Extension of Weakly Nonlinear Wave Equations for Rapidly Varying Topography (급변수심에의 적용을 위한 약 비선형 파동방정식의 확장)

  • 윤성범;최준우;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • From the weakly nonlinear mild-slope wave equations introduced by Nadaoka et al.(1994, 1997), a set of weakly nonlinear wave equations for rapidly varying topography are derived by including the bottom curvature and slope-squared tenns ignored in the original equations ofNadaoka et al. To solve the linear version of extended wave equations derived in this study one-dimensional finite difference numerical model is con¬structed. The perfonnance of the model is tested for the case of wave reflection from a plane slope with various inclination. The numerical results are compared with the results calculated using other numerical models reported earlier. The comparison shows that the accuracy of the numerical model is improved significantly in comparison with that of the original equations ofNadaoka et al. by including a complete set of bottom curva1w'e and slope¬squared terms for a rapidly varying topography.

  • PDF

Application of Proposed Rating Equations using LRFD Beam-Column Interaction Equations for Girders and Towers in Steel Cable-Stayed Bridges (강사장교 거더와 주탑에 하중저항계수설계법의 보-기둥 상관식을 사용한 내하율 산정식 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Beom Soo;Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • As girders and towers in cable-stayed bridges are subject to bending moments as well as axial forces, the conventional load rating equation, which considers only the single force effect, cannot be used to evaluate the rating factors of cable-stayed bridges. The load rating equation for components in cable-stayed bridges is not currently established yet. In this paper, we propose load rating equations for girders and towers in cable-stayed bridges using the interaction equations for beam-column members. Moving load analyses were performed for the cases of a maximum axial compressive force, maximum positive moment and maximum negative moment for each component in cable-stayed bridges and detailed procedures to apply proposed equations were presented. The Dolsan Grand Bridge was used to verify the validity of proposed equations. The conventional load rating equation overestimates rating factors of girders and towers in the Dolsan Grand Bridge, whereas proposed equations properly reflect the axial-flexural interaction behaviour of girders and towers in cable-stayed bridges.

Crossing the Gap between Elementary School Mathematics and Secondary School Mathematics: The Case of Systems of Linear Equations (그림그리기 전략을 통한 초.중등수학의 연립방정식 지도 연결성 강화)

  • Kwon, Seok-Il;Yim, Jae-Hoon
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.91-109
    • /
    • 2007
  • This study deals with the problem of transition from arithmetic to algebra and the relationship between elementary and secondary school mathematics for systems of linear equations. In elementary school, activity for solving word problems related to systems of linear equations in two variables falls broadly into using two strategies: Guess and check and making a table. In secondary school, those problems are solved algebraically, for example, by solving systems of equations using the technique of elimination. The analysis of mathematics textbooks shows that there is no link between strategies of elementary school mathematics and secondary school mathematics. We devised an alternative way to reinforce link between elementary and secondary school mathematics for systems of linear equations. Drawing a diagram can be introduced as a strategy solving word problems related to systems of linear equations in two variables in elementary school. Moreover it is closely related to the idea of the technique of elimination of secondary school mathematics. It may be a critical juncture of elementary-secondary school mathematics in the case of systems of linear equations in two variables.

  • PDF

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

UNIQUE CONTINUATION FOR SCHRӦDINGER EQUATIONS

  • Shin, Se Chul;Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • We prove a local unique continuation for Schr$\ddot{o}$dinger equations with time independent coefficients. The method of proof combines a technique of Fourier-Gauss transformation and a Carleman inequality for parabolic operator.

  • PDF

BIFURCATION OF BOUNDED SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ward, James--Robert
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.707-720
    • /
    • 2000
  • Conley index is used study bifurcation from equilibria of full bounded solutions to parameter dependent families of ordinary differential equations of the form {{{{ {dx} over {dt} }}}} =$\varepsilon$F(x, t, $\mu$). It is assumed that F(x, t,$\mu$) is uniformly almost periodic in t.

  • PDF