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BIFURCATION OF BOUNDED SOLUTIONS
OF ORDINARY DIFFERENTIAL EQUATIONS

JAMES ROBERT WARD, JR.

ABSTRACT. Conley index is used to study bifurcation from equi-

libria of full bounded solutions to parameter dependent families of

ordinary differential equations of the form ‘fi—f = eF(z,t,p). It is

assumed that F(z,t, u) is uniformly almost periodic in .

1. Introduction

The concepts and results of the Leray-Schauder degree and index the-
ories have been very effectively applied to prove global continuation and
bifurcation of solutions to nonlinear equations in a Banach space. The
homotopy invariance of degree under certain conditions is a fundamen-
tal property generally used to establish continuation or bifurcation of
solutions. The Conley index also has invariance properties that make
it a useful tool to study some bifurcation phenomena in dynamical sys-
tems. In this paper we study non-autonomous ordinary differential sys-
tems, and use the Conley index to prove the existence of continua of
full bounded solutions bifurcating from the trivial solution of these sys-
tems. More precisely, we study parameter dependent families of ordinary
differential equations of the form

dzx
(1) i CAD
where F' is a continuous function of (z,t,u) € A :=Q xR xR, Q C R™
is an open set and ¢, u € R are parameters. By a (full) bounded solution
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of (1) we mean a solution z = z(t) satisfying (1) for all t € R and such
that

2]l := suplz(¢)] < oo.

Throughout this paper, we assume F(0,¢,u) = 0 for all (¢,u) € R x R,
so that z = 0 is an equilibrium value for all p and . The parameter
p will generally be a bifurcation parameter, while € will generally be a
real number of small magnitude. We will also assume that F(z,t, i) is
almost periodic in ¢t € R, uniformly for (z, 1) in compact sets (see [3] or
[10]). Let

We will study the bifurcation of full bounded solutions of (1) making
use of the averaged equations

dr

(2) = = Bl )

Proofs are based upon applying Conley index theory to a family of
skew-product flows associated with (1), and obtaining indices via homo-
topy to the associated averaged equations. Notice that the Conley index
cannot be applied directly to nonautonomous differential equations, since
the solutions of such equations do not define a flow (dynamical system)
on the space of initial values. For this reason we use the associated skew
product flows. For the properties of the homotopy index we refer the
reader to [2] or [9], and for skew product flows to [10] or [5]; the use of
these in the present context is discussed in {11}, [12], and [13].

We will make use of a weak topology on our families of differential
equations. This topology was studied by Artstein [1] in much greater
depth and generality than will be needed here. Let  C R™ be an open
set and f : OxR — R™. Suppose f satisfies the Carathéodory conditions:
for each z € Q the function ¢ — f(z,t) is Lebesgue measurable, and
for almost all t € R (in the sense of Lebesgue measure) the function
z — f(z,t) is continuous on 2. Suppose
(C1) For every compact set A C 2 there exist two locally L' functions
ma(t) and k4(t) such that if z,y € A and ¢ € R then:

(1) 1£(@,8)] < mat)
(2) [/(t) = F(5,8)] < kalt) ]z — yl,
(3) for every € > 0 there exists a § = d4(¢) > Osuch thatif £ CR
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is measurable, contained in an interval [¢, t+1], and with measure
less than & then [.m4(t)dt <, and

(4) there exists a number N4 such that fttH ka(s)ds < Ny for all
teR.

Given a function f satisfying (C1I) one can define an associated set of
functions G on € x R that contains the time translates of f, defined for
7 € Rby f(z,t) = f(z,7+1) for all (z,t) € QO x R. With an appropriate
topology on G, one can then define skew-product flows on Q@ x G.

DEFINITION 1([1]). Let f satisfy (C1) and for every compact set A C
Qand € > 0 let Ny and d4(¢) be given by (C1). The family G = G(f)
consists of all Carathéodory functions g : & x R — R™ satisfying : For
every compact A C €2 there exist two locally L! functions M, and K4,
such that if z,y € A and ¢t € R then

(1) lg(a,£)] < May(t),

(2) |g(z,t) — g(y,t)] < Kay4(t)|x —yl|, and the functions My, and
Ky, satisfy:

(3) if E C [t,t+1] and the Lebesgue measure of E is less than d4(€)
then [, M4,4(s)ds < € and

(4) [ Ka,(s)ds < N forall t € R.

If g € G(f) then so is g, for any 7 € R. Moreover, for each 2y € Q
the initial value problem

dz
dt
has a unique solution x(¢; ¢, g) defined on a maximal interval of exis-

tence I(zg, g) = (a(zo, g), (0, g)). Artstein in [1] gives the space G a
weak metrizable topology which we will impose. This is given by

= g(z,t), z(0) =z

DEFINITION 2([1]). Let {gx} be a sequence in G. We say {gx} con-
verges (weakly) to g € G provided for every 2 € Q and t € R the

sequence {fot gr(z, s) ds} converges in R™ to fotg(x, s)ds.

Convergence in G is induced by a metric, which is explicitly given
in [1]. The topological space G is compact and is closed under time
translations. A local flow 7 can be defined on Q x G by n(xz¢,g,t) =
(x(t; xo, 9), g:) for t € I(xg, g). The flow (dynamical system) 7 is a skew
product flow (see [10] or [5]).
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We are not interested in flows on all of {2 x G however. Instead we take
the closure in G of the time translates of f, the (weak) hull of f,which
we denote by Hy,(f). Since G is compact and H,(f) is closed, it follows
that H,(f) is compact. The flow 7 is locally invariant on 2 x H,,(f) and
we restrict our attention entirely to this local flow, which we also denote
by m. If f(z,t) is a continuous and uniformly almost periodic in ¢t € R
then the usual hull of f is the closure of the time translates of f in the
topology of uniform convergence on compact sets. We will call this the
strong hull of f, and denote it by H,(f). Now if {f; } is a sequence of
translates of the uniformly almost periodic function f(z,t) converging in
the weak topology to g, every subsequence of that sequence has in turn
a subsequence converging uniformly on compact sets to some A in the
strong hull; thus this subsequence converges to h in the weak topology
also. Hence for each z € Q, g(z,t) = h(z,t) a.e., and in fact {f; } con-
verges to h in the strong topology. Thus in the uniform almost periodic
case the topologies are equivalent if we identify the equivalence classes
of functions in H,(f) with their continuous representatives. Moreover,
uniform convergence on compact sets of a sequence of uniformly almost
periodic functions is equivalent to its uniform convergence on sets of the
form K x R, K C Q compact [3]. Thus our weak topology is equivalent
in this case to this latter topology. Nevertheless, the weak topology will
be useful to us in the study of parameter dependence. Since the hull of f
is essentially independent of these topologies, we will simply denote it by
H(f). Recall that if g € H(f) then g is also uniformly almost periodic
and f € H(g). The space Q2 x H(f) is a locally compact metric space in
any of these topologies.

We will apply the following abstract continuation result regarding the
Conley index; see [2] or [9]. Recall that if 7 is a flow on a metric space
X, N C X is said to be a compact isolating neighborhood for 7 if N is
compact and the maximal 7 invariant set contained in N is contained in
the interior of N. A compact set I is called a compact isolated invariant
set if I has a compact neighborhood in which I is the maximal invariant
set. '

THEOREM 3. Let X be a locally compact metric space and suppose
for each A € R that 7y, is a local flow on X. Suppose:(a) The map A — m,
is continuous in the sense that if {\,} C R, {z,} C X, and {t,} C R
are sequences with A\, — A, z,, — z, t, — t, and m)(z,t) is defined, then
7, (Zn, tn) is defined for all large n and 7 (x,,t,) — ma(x,t) asn — oc.
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(b) There is a compact set N in X such that, for each A € R, N is an
isolating neighborhood for my. Let I(\) = {zx € N : m\(z,t) € N for all
t € R}.Then the Conley (homotopy) index h(my, I(\)) is defined and its
value is independent of A € R.

Recall that the Conley homotopy index is a homotopy class of com-
pact pointed spaces, and that if the index of a compact isolated invariant
set Iy is not the homotopy class of 0, the one-point pointed space, then
Iy # 0. We will write h(m, I) for the Conley index of a compact isolated
invariant set I in a flow «.

We also must explain our use of the term bifurcation. Let X be a
locally compact metric space with distance function d. Let J = [a,b]
be a compact interval of real numbers containing the number Ay in its
interior. Let 7y, A € J, be a continuous family of (local) flows on X. A
solution through z for a flow 7, is a function ¢ mapping a real interval
I 5 0 into X such that o(t) = m\(z,t) for all t € I. A full solution is
one with I = R. A full bounded solution is a full solution ¢ = o(t) such
that

closure{o(t) : t € R} is compact.

We assume there is a compact set A C X which is invariant for all 7,
that is, for all A € J, z € A, and t € R, m,(z,t) € A. Since each m,(-,t)
is a homeomorphism, 7,(A,t) = A for all A € J and t € R. We define
bifurcation from A.

DEFINITION 4. We will say that Ay € J is a bifurcation value from A
if for every € > 0 there is a pair (A, 2) € J x X with z ¢ A and such
that there is a full my-solution o = o(¢) through z satisfying

d(o(t), A) + |A = x| < e for all t € R.

Since we assume X is locally compact, it follows that ¢ is a full
bounded solution. Notice that if ¢(t) is a full solution through z and
o(to) = y, then p(t) = o(t + o) is a full solution through y. If the m,
form a family of semiflows, the definition may be modified to fit that
situation. In this paper we study ordinary differential equations only
and have no need for semiflows.

Let X be a locally compact metric space and let wx, A € J, be a
continuous family of (local) flows on X. Let A be a compact set in X
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invariant for all 7. Define the set & as follows:
8" = {(\,z) : there is a full bounded solution for 7, through z}
So={(\z)eS" :z¢ A}
and let .
S = 80.

THEOREM 5. Assume: (1) {m\ : A € J} is a continuous family of

local flows on X. (2) There is a compact connected set A which is
invariant for all A € J. (3) There is a Ay in the interior of J such
that for all A € J\{\o}, A is an isolated invariant set for my. (4) The
Conley index h(my, A) is constant on the intervals [a, Ag) and (Ag, b]. (5)
h(mg, A) # h(m,, A).
Then (cl): For all € > 0, there exists (A\,z) € J x X, z ¢ A, and a
full wy—solution o through x satisfying d(o(t), A) + |A — X¢| < € for all
t € R; that is, \g is a bifurcation point from A. (c2): Let C denote the
component of 8 containing {\o} X A; then either C is unbounded or else
C meets {a,b} x X.

This theorem extends one given in [14]; the proof will be given else-
where.

2. Bifurcation in Almost Periodic Systems

Let F: A=R™ x R xR — R™ be continuous. We assume there are
continuous functions g, h, and « such that

F(z,t,p) = g(z, ) + s(p)h(z,t), and F(0,¢,p) =0

for all (¢, 1) € R?, with g(z, 1) and h(z,t) locally Lipshitz continuous in
z € R™, uniformly with respect to £ and 4 in compact sets. Consider
the parameterized family of differential equations

dx
(3) 5 = €9(z, 1) +en(p)h(z, ).
By our assumptions, initial value problems for (3) have unique solutions.
which vary continuously with the parameters € and p. We also assume
that h(z,t) is almost periodic in ¢ € R , uniformly with respect to z in
compact sets. We also assume that for each compact subset K € R™.

F(z,t,p) is continuous in g € R, uniformly with respect to (z,t) € K x
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R. Thus, given n > 0 and compact K C R™ there exists § > 0 such that
|F(z,t, 1) — F(z,t, ug)| < n whenever (z,t) € K xR and |u; — ps] < 6.
For 7 € R, define the translated function k. by h.(z,t) = h(z,t+ 7) for
all (z,t). We let

H = Hull(h) := closure{h, : T € R},

where the closure is in the topology of uniform convergence on compact
sets. It is known that since A is uniformly almost periodic in ¢, then H
is compact. Moreover, if h* € H then Hull(h*) = Hull(h). We may
define a flow v on H by «v(h*,t) = h}. For any h* € H, the positive limit
set w(h*) and the negative limit set a(h*) are each equal to H itself. Let
ho(z) denote the average of h(z,t), so that

T—oo 0

We relate (3) to the averaged equation

(@) 2 — 0@ 1) + Kwhoe) = Fo(e, ).

It follows from our assumptions that initial value problems for (4) have
unique solutions. We will denote by £, the flow on R™ generated by
initial value problems for (4). Thus

ﬂu(‘r(h t) = U(t, o, FO(') :U/))a
where u(t) satisfies

du

E = FO(U, IU/)7 u(07$07F0(7'u’)) = Zo.

We will represent a generic member of H as h*(x,t). Consider the family
of differential equations

dz

(5) i
for h* € H.

Recall v denotes the translation flow on H, y(h*,t) = h}. Let H

denote the homotopy type of the topological space H; H is compact and

connected. Let H* denote the Conley homotopy index of H under the

eg(z, u) +en(p)h’ (2,t)
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flow 4. Then H* = [H, p] where the distinguished point p ¢ H, since the
flow on H has an empty exit set.

Fix p. We wish to define a family of skew product flows associated
with (5). Let u(t; zo,ch*) be the solution of (5) with u(0;zo,eh*) = zo.
We define 7, as a flow on R™ x H by

Te(Zo, B, t) = (u(t; 20, €h7), hy) for (zo, h*) € R™ X H.

A solution ¢ through (zo,h*) € R™ x H is a function ¢ = o(t) on an
interval I into R™ x H such that ¢(0) = (zo, h*) and o(t) = 7, (20, h*, 1)
for t € I. A full solution is one with I = R. A full bounded solution is
a full solution with first component bounded: supeg |u(t; zo,eh*)| < co.
Since H is compact, the second component must be bounded in any
case.

Define the set S; as follows:

St = {(p,z0,h*) € [a,b] x R™ x H :

there is a full bounded solution for 7, through (zo, h*)}

Sco={(m,z) €S :z¢ A}
and let _
SE = 85,0.

THEOREM 6. Let J = [a, b] be a compact interval. Suppose: (i) There
isap € J,a < py <b, such that {0} is an isolated invariant set for
By, 1 € J\{po}. Moreover, for a < p < po, {0} is asymptotically stable
for B8,, and for pg < p < b, {0} is not asymptotically stable; the Conley
index h(B,, {0}) is non-zero and constant on the subintervals [a, y19) and
(po, b]. (ii) h(Ba, {0}) # h(Be, {0})-

Then: There is an € > 0 such that for 0 < ¢ < g¢: (cl) po Is a
bifurcation point from {0} x H for the skew product flows 7. (for each
fixed 0 < € < g9). (c2) Let C. denote the component of S; containing
(1o, {0} x H); then either C. is unbounded or else C. meets {a, b} x R™ x
H.

If, in addition to conditions (i) and (ii), {0} is a repeller for py < p < b
then there is a continuum of bounded solutions of (3) bifurcating from
(1o,0) in Rx R™.

Proof. There are two parts to the proof. In the first part, we show
that there is an g9 > 0 such that for each 0 < £ < g9 and p € J\{uc}
the invariant set {0} x H in the skew product flow 7, associated with
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(5) has non-trivial Conley index, and this index changes as p crosses .
This will prove bifurcation in the skew product flows. We then consider
bifurcation in the original family of differential equations, and almost
periodicity.

Part 1: Let p € J\{uo}. First notice that if z = z(t) is a solution of
(5) for some € > 0 then y(t) = z(t/e) is a solution of

dy ‘
(6) 2 = 9 ) + () (y, t/e).
We will homotopy (6) for fixed small € > 0 to the equation averaged at
€ =0. Let 0 < € < 1 and consider the homotopy

) Y (1= NFRy) + AP 17 )

for F*(y,t, 1) = g(y, u)+r(p)h*(y, t/c), and Fo(y) = g(y, p) +r(p)ho(y).
Let B(r) be an isolating neighborhood of {0} in the flow (3, generated

by (4). The family of equations (7) has B(r) = {x € R™: |z| < r} as
an isolating neighborhood. If this is not the case, then for each positive
integer n € N there is a bounded function y, = y,(t), for all t € R, and
numbers \, € [0,1], &, € (0,n7'], s, € R, and an h,, € H, such that for
all t, y,(t) satisfies the differential equation

(8) % = (1= X)Fo(yn) + Aalg(yns 1) + (1) hn(Yns /)]

and y,(s,) € OB(r). Let 2,(t) = yn(t+s,); then z, satisfies (8) translated
by s,. Now both z, and dz,/dt are uniformly bounded on R indepen-
dently of n € N, so there is a subsequence of {z,} uniformly conver-
gent on compact subsets of R to some z = z(t) with z(t) € B(r) and
2(0) € dB(r) We can assume A, — Ao € [0, 1]. Now the key here is that
the sequence of functions {h,(-,-€,')} converges in our weak topology
to ho(-), ([13], Lemma 4.1). From all of this it follows that z satisfies
% (L= M) Fu((t)) + NoFo(=(2)) = Fy(=(2)

for allt € R. Since 2(0) € 8B(r) and 2(t) € B(r) for all ¢, this contradicts
the hypothesis that B(r) is an isolating neighborhood for (4), and proves
the existence of 0 < gy < 1 satisfying the claim.
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Now fix € € (0, &), as well as p € J\{uo}. We return to the equations
(5) or (7) with z = z(t) = y(et), for our fixed 0 < € < gy and consider
the homotopy

) z-

for A € [0,1], where, as before, F*(z,t, u) = g(z, p) + c(p)h*(z,t). We
define a family of skew product flows 7§ on R™ x H associated with (9)
by

(1 = NeFo(z) + AeF*(z,t, p)

(o, F*, t) = ((t; mo, Aek(p)R*), hy)

where z(t; 2o, Aek(p)h*) denotes the solution to (9) with z(0) = zo.
(Here we are holding p fixed, but later will let it vary).

It follows, essentially from results of Artstein [1], that the family of
flows {m}} is continuous in the sense of Theorem 1. Moreover we have
just shown that B(r) x H is a compact isolating neighborhood for each
mi, A € [0,1]. Thus the Conley index of the maximal invariant set in
B(r) x H for n¥ is independent of A € [0, 1]. Let 7(0) denote this set for
7. Now in this case, A = 0 so (9) becomes the equation

dx
(10) Et' =EFO(£II,,LL).

The flow determined by (10) is the same as that of (4) except for a
change of independent variable t — e£~1t. We denote this flow by §,.
By hypothesis, h(8,, {0}) # 0. Let 7y denote the flow on H given by
v(h*,t) = h;. Then 7} is a product flow on R™ x H given by
Ty = ﬁu Xy

and

I(0) = {0} x H.
It follows (see [1] or [9]) that

h(mg, 1(0)) = h(Bu x 7, {0} x H) = h(B,, {0}) A h(y, H),

where A denotes the smash product of pointed topological spaces (ho-
motopy types). By hypothesis, h(8,,{0}) # 0, and h(y, H) = [H*, p|
is of the form of a compact connected topological space with separated
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distinguished point (see above; recall H has an empty exit set under the
flow 7). It follows from a result in [12] that h(ng, I(0)) # 0. Hence

h(nt, 1(1)) = h(rg,1(0)) #0,
where 7 is the skew product flow on R™ x H generated by the initial
value problems

dr
dt

where h* € H. Now I(1) = {0} x H also.

The idea now is that the index h(n{, I( )) = h(n{,{0} x H) actually
depends upon . For a < p < po, h(n¥,{0} x H) = h(B,,{0}) A
[H*,p] = S°A[HY, p] = [H*, pl, since {0} is asymptotically stable for
(10). Moreover, [H*,p] is not a connected topological space. On the
other hand, for yuy < p < b, h(nt, {0} x H) = h(B,, {0}) A [H*, p], but in
this case our hypothesis is that h(8,,{0}) is connected. It is now easy
to show that A(B,, {0}) A [H*, p] = (h(Bu {0}) x [H", pl)/(~(Bu {0}) V
[H*, p]) is also connected. (By h(3,,{0})V[H*, p], we mean, as usual, the
(homotopy type of) space obtained by joining the two spaces at their
respective distinguished points). Thus the index changes as u crosses
po. It follows from THEOREM 2 that there is a continuum of bounded
solutions in the skew product flows bifurcating in R™ x H from {0} x H.
This proves the first part of the theorem.

Part 2: We now attend to the question of bifurcating solutions to
the original differential equation, and the question of almost periodic
solutions. These are separate from the question of bifurcation in the
skew product flows. This is because if o (t) = 7§ (xo, h*, t) is a bifurcating
solution in the skew product flow then wu(t) = wu(t; zo,ex(p)h*), with
h* € H, is a full bounded solution to
(1) % — ol ) + R (3, 1),
but this does not insure the existence of a full bounded solution to our
original differential equation

% = cqlo u) + en(hz, ).

This is because, while h € Hull(h*), so there exists a sequence {a,}352;
with k% (z,t) = h*(z,t + an) — h(z,t) as n — oo, the corresponding
sequence {u,, } may converge to v = 0, instead of converging to a nonzero

=eF*(z,t;u), z(0) = o

(12)
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solution of (12). The additional hypotheses in the second part of the
theorem are designed to guarantee that this does not happen.

Thus we now assume in addition to conditions (i) and (ii), {0} is a
repeller for gy < p < b. We claim there is a continuum of bounded
solutions of (3) bifurcating from (pg,0) in Rx R™, and these solutions
are almost periodic near the bifurcation point. Let (i, zo, h*) € C,; then
either u < pg or p > pg. The cases are similar, and we treat only the
first; so we suppose p < pg. Now let U(t) = u(t; zo, ex(p)h*), so U(t) is
a full bounded solution of (11), so

U'(t) = eg(U(t), u) + ex(mw)h* (U (2), 1)

for all t € R. Since a < p < py, the zero solution of (11) is asymp-
totically stable. Let A = a(zgh*), i.e.,, A is the negative limit set of
(U(t), h;) in R™ x H. Since U(t) is a full bounded solution and h(z,t) is
uniformly almost periodic in ¢, A is compact. Moreover, ({0} x H)NA =
(0 since the zero solution is asymptotically stable. Now there exists a
sequence {a,} with o, — —o0 as n — oo and h*(z,t + a,) — h(x,t)
uniformly on compact sets. There is a subsequence of {a,, }, which we re-
label as {a,}, such that U(an) — po € A. We have that (U(ay), b}, ) —
(po, H) € A. The solution of (12) passing through p, at ¢ = 0 is the
required full bounded solution.

Since the case of g < u < b is almost identical to the one considered,
this completes the proof of the theorem. O

3. An application

Let p,q € C(R,R) be continuous almost periodic functions. We con-
sider the following example:
2

(13) o+ uplt) — 2

with € > 0 and p € R. This is equivalent to the system

Z e 2g(t)x =0

(14) gt (Mp( ) — 2y —eq(t)z.

The averaged system is

(15) gt = (up - o)y — g,
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where we assume the mean values of p and q are positive:

T

1 1
pleEgoT/o p(s)ds > 0, and q—Th_rgoT A q(s)ds > 0.

When g < 0 the origin is a repeller for the averaged equation (15),
and hence has Conley index h(8,,{0}) = 3.°. However, when y > 0,

the origin is asymptotically stable, and h(8,, {0}) = 3_°. It follows from
THEOREM 3 that for all sufficiently small € > 0, the system (14) has a
bifurcating continuum of full bounded solutions in (u, (z,y)) space.
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