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EXISTENCE OF SOLUTIONS OF FUZZY DELAY
INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL
CONDITION

K.BALACHANDRAN AND K.KANAGARAJAN

ABSTRACT. In this paper we prove the existence of solutions of fuzzy delay integrod-
ifferential equations with nonlocal condition. The results are obtained by using the
fixed point principles.

1. INTRODUCTION

Several authors [3-7,11,12] have studied the fuzzy differential equations by using
the H-differentiability for the fuzzy valued mappings of a real variable whose values
are normal,convex, upper semi continuous and compactly supported fuzzy sets in R™.
Seikkala [10] defined the fuzzy derivative which is generalization of the Hukuhara de-
rivative in [8]. For the Cauchy problem z’ = f(t,z), z(to) = o, the local existence
theorems are proved in [11], and the existence theorems under compactness-type condi-
tions are investigated in {12] when the fuzzy valued mapping f satisfies the generalized
Lipschitz condition. Park et al [7] studied the fuzzy differential equation with nonlocal
condition. Nieto [6] proved an existence theorem for fuzzy differential equations on the
metric space (E™, D). Balachandran and Prakash (2] proved the existence of solutions
of fuzzy delay differential equations with nonlocal condition of the form

Z'(t) = f(t,z(o1(t), x(02(t),- - ,2(on(t))), t€J =[0,d]
z(0) — g(ti,t2, - ,tp, 2(+)) = Zo.

In this paper we study the existence of solutions of fuzzy delay integrodifferential
equations with nonlocal condition of the form

1y '@t) = f (t,x(ol(t)),/:h <t,S,ClJ(O’2(S)),/05 k(S,T,IE(O’g(T)))dT) ds) :
(2)  =z(0) — gltitz,- -, tp,2()) = %o,

where f: IXx E"x E" 5 E*" h: Jx JxE'"xE" - E"and k:JxJx E" — E"
are levelwise continuous functions, g : J? x E® — E™ satisfies the Lipschitz condition
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and o; : J — J, i = 1,2,3 are continuous functions, oi(t) < t for all t € J. The
existence of solutions for non fuzzy case of the problem (1)-(2) has been discussed in
[5]. The symbol g(t1,ts,- - tp,z(-)) is used in the sense that in the place of '/, we can
substitute only elements of the set {t1,t2, -~ ,tp}. For example, glti,ta, ,tp, x(-))
can be defined by the formula

g(ti,ta, -+, tp,2(")) = caaz(tl) + cox(b2) + - + cpx(tp),

where ¢;(i = 1,2,--- ,p) are given constants.

2. PRELIMINARIES

Let Px(R™) denote the family of all nonempty, compact, convex subsets of R".
Addition and scalar multiplication in Px(R™) are defined as usual. Let A and B be
two nonempty bounded subsets of R™. The distance between A and B is defined by the
Hausdorff metric

d(A, B) = inf ||a — b|[,sup inf |la —b]| },
(4, B) maX{ztelgggB |la — bl i“éﬁi&”“ II}
where || - || denote the usual Euclidean norm in R". Then it is clear that (Px(R"),d)
becomes a metric space. Let I = [to,to + a] C R (a > 0) be a compact interval and let
E™ be the set of all uw: R® — [0,1] such that u satisfies the following conditions:

(i) u is normal, that is, there exists an zo € R such that u(zo) = 1,

(i) u is fuzzy convex, that is, u(Az + (1 — A)y) = min{u(z),u(y)}, for any z,y € R"
and 0 < A< 1,

(ili) w is upper semicontinuous,

(iv) [u]® =cl{z € R™ : u(x) > 0} is compact.

If uw € E™, then u is called a fuzzy number, and E" is said to be a fuzzy number
space. For 0 < o < 1, denote [u]* = {z € R" : u(z) > a}. Then from (i)-(iv), it follows
that the a-level set [u]* € Px(R") forall 0 < a < 1.

If g: R® x R® — R" is a function, then using Zadeh’s extension principle we can
extend g to E™ x E™ — E™ by the equation

g(u,v)(z) = sup min{u(z),v(y)}-

z=g(zy)
It is well known that [§(u,v)]* = g([u]*,[v]*) for all u,v € E*, 0 < a < 1 and
continuous function g. Further, we have [u + v]® = [u]* + [v]%, [ku]* = k[u]®, where

k € R. Define D : E® x E™ — [0,00) by the relation D(u,v) = sup d([u]®, v]%),
0<axl

where d is the Hausdorff metric defined in Px(R™). Then D is a metric in E™.
Further we know that (9]
(i) (E™, D) is a complete metric space,
(ii) D(u+ w,v +w) = D(u,v) for all u,v,w € E”,
(iii) DA, W) = |A|D(u,v) for all u,v € E" and A € R.



EXISTENCE OF SOLUTIONS OF FUZZY DELAY INTEGRODIFFERENTIAL EQUATIONS 67

1t can be proved that D(u + v,w + z) < D(u,w) + D(v,z) for u,v,w and z€ E™.

Definition 2.1. [3] A mapping F : I — E™ is strongly measurable if for all o € [0, 1]
the set-valued map Fy : I — Pg(R™) defined by Fo(t) = [F(t)]* is Lebesque measurable
when Px(R™) has the topology induced by the Hausdorff metric d.

Definition 2.2. (3] A mapping F : I — E™ is said to be integrably bounded if there is
an integrable function h(t) such that ||z(t)|| < h(t) for every z(t) € Fo(t).

Definition 2.3. The integral of a fuzzy mapping F : I — E™ is defined levelwise by
(f; F(t)dt]* = [; Fo(t)dt = The set of all [} f(t)dt such that f : I — R" is a measurable
selection for F, for alla € [0,1].

Definition 2.4. [1] A strongly measurable and integrably bounded mapping F : I — E™
is said to be integrable over I if [, F(t)dt € E™.

Note that if F : I — E™ is strongly measurable and integrably bounded, then F' is
integrable. Further if F : I — E™ is continuous, then it is integrable.

Proposition 2.1. Let F,G : I — E™ be integrable and c € I, € R. Then

(i) /t T Pyt = / “Fydt + / T P,

to

(i) /1 (F(t) + G(t))dt = / F(t)dt + /1 G(t)dt
(i) / AF(8)dt = A / F(t)dt,

(iv) D(F,QG) is integrable,
) D ( /1 F(t)dt, /1 dt) < /1 D(F(), G(t))dt.

Definition 2.5 A mapping F : I — E™ is Hukuhara differentiable at to € I if for some
ho > 0 the Hukuhara differences

F(to + At) —p, F(to), F(to) —n F(to — At)
exist in E™ for all 0 < At < hg and there ezists an F'(to) € E™ such that

Jim D((F(to + At) = F(t0))/At, F'(t0)) = 0

and
A}%+D((F(to) —n F(to — At)/At, F'(to)) = 0.

Here F'(t) is called the Hukuhara derivative of F' at to.

Definition 2.6. A mapping F : I — E™ is called differentiable at a to € I if, for any
a € [0,1], the set-valued mapping Fu(t) = [F(t)]* is Hukuhara differentiable at point to
with DF,(to) and the family {DFy(to) : o € [0,1]} define a fuzzy number F(to) € E™.
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If F : I — E" is differentiable at to € I, then we say that F'(to) is the fuzzy
derivative of F(t) at the point to.

Theorem 2.1. Let F : I — E™ be differentiable. Denote Fy(t) = [fa(t), ga(t)]- Then
fo and g, are differentiable and [F'(t)]™ = [f4(t), g, (1))

Theorem 2.2. Let F : I — E™ be differentiable and assume that the derivative F” is
integrable over I. Then, for each s € I, we have

F(s) = F(a) + / Pt

Definition 2.7. A mapping f : I x E™ — E" is called levelwise continuous at a point
(to,x0) € I x E™ provided, for any fizred a € [0,1] and arbitrary € > 0, there exists a
5(e,a) > 0 such that

d([f (¢, 2)]% [f(to, 20)]%) <€
whenever |t — to] < 6(¢, @) and d([x]%, [zo]*) < d(e,a) for allt € I,z € E™.

Corollary 2.1 [2] Suppose that F : I — E™ is continuous. Then the function

G(t):/tF(s)ds, tel

is differentiable and G'(t) = F(t).
Now, if F' is continuously differentiable on I, then we have the following mean value
theorem

D(F(b), F(a)) < (b—a) - sup{D(F'(t),0),t € I}.
As a consequence, we have that
D(G(b),G(a)) < (b - a) - sup{D(F(t),0),t € I}.

Theorem 2.3. Let X be a compact metric space and Y any metric space. A subset
Q of the space C(X,Y) of continuous mappings of X into Y is totally bounded in the
metric of uniform convergence if and only if Q is equicontinuous on X, and Q(zx) =
{¢(z) : ¢ € Q} is a totally bounded subset of Y for each z € X.

3. MAIN RESULTS

Definition 3.1. A mapping z : J — E" is a solution to the problem (1)-(2) if and
only if it is levelwise continuous and satisfies the integral equation

x(t) = mo+g(ti,te, - ,tp,2())

(3) + /Otf (s,z(al(s)),/osh (S,T,il?(O’z(T)),/OT’C(T,G,ZE(O'g(O)))de) dr) ds
forallte J.
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Let M + Na = b, a positive number, where

t s
M = maxD (f (t,w(al(t)),/ h (t,s,x(o’z(s)),/ k(s,’r,z(m(v’)))d’r) ds> ,()) and
0 0

N = D(g(t17t27 Tt vtp>w('))16)7 0 € E™.

Let Y = {¢ € E™: H(£,z0) < b} be the space of continuous functions with H(€,vy) =
sup D(£(¢), ¥(t))-
0<t<a
Theorem 3.1. Assume that:

(i) The mapping f: J x Y — E" is levelwise continuous in ¢ on J and there exists
a constant Gy such that

D(f(t,(t1,l‘2),f(t,y1,y2)) < GO[D(xl;yl) + D(Iliz,yg)]

(i1) The mapping h : J x J XY — E" is levelwise continuous and there exists a
constant G such that

D(h(t:3’z1aw2))h(t,s,y17y2)) < Gl [D(xlayl) + D($27y2)]

(iii) The mapping k : J x J x Y — E" is levelwise continuous and there exists a
constant G4 such that

D(k(t, s, z),k(t, s,y)) < G2D(z,y)
(iv) There exists a constant G3 such that forall z,y € Y and 0y, : J — J, i1=1,2,3
D(z(ai(t)),y(0i(t))) < GsD(z(t),y(t))
(v) g: JP x Y — E™ is a function and there exists a constant G4 > 0 such that

D(g(tl’t2"" )tP7$(‘))’g(tl’t27"' ’tpvy('))) < G4D(.’L‘,y).

Then there exists a unique solution z(t) of (1)-(2) defined on the interval [0, a].
Proof. Define an operator ®: Y — Y by
(I)I(t) = To+ g(tlat27 e ,tp,.’lf('))

@) + /0 't <s,x(01(s)), /0 h <S,T,x(a2(T)), /0 Tk(r,@,x(a3(0)))d0) dT> ds.

First, we show that ® : Y — Y is continuous whenever £ € Y and that H(®¢, zo) < b.
D(®L(t + ), B4(t))

= D(:zo +g(ti,t2, - 5 tp,€(4))

+ /(;t+h f <8,5(01(8)), /Osh (3,7',5(0'2(7’))’/07k(T,e,f(ag(e)))(w) dT> ds,

xo + gty ta, - 15, €("))
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+/0t f (5,5(01(3)),/08 h (s,T,E(Uz(T)),/OT k(r,6,§(03(0)))d9) dT) ds)
D (/Oth (s,s(m(s)),/osh (s,T,f(ag(‘r)),/OTk(T,G,g(o-:;w)))dg) dT) ds,
/Otf (375("1(3))7 /0 h (s,T,ﬁ(az(T)), /0 Tk(T,O,E(Ug(O)))dO) dr) ds)

/t "D (f (s,ﬁ (01(5)), /0 h (3,7,5(02(7)), /O Tk(r,9,§(03(0)))d9> dT) ds,(‘)) ds

< hM —0ash—0.

IN

IN

That is, the map ® is continuous. Now
D(®¢(t), xo)
= D(xO + g(tl,t2> e atpaé.('))

+/Otf (s,x(m(S))’/osh (S,Tyw(UZ(T)),/OTk(T’ e’m(a3(9)))d9> dT) @, xo>

< D(g(ts,ta, - ,tp,€(-)),0)
+ /0 D ( f (s,w(al(s)), Os B <s,r,x(az(T)), /0 Tk(T,H,x(Ug(B)))d(?) dT) ,0) ds
< N+ Mt
and so

H(®¢,z0) = sup D(PE(t),z0) S N+ Ma<b.
0<t<a

Thus ® is a mapping from Y into Y. Since C([0,a], E™) is a complete metric space
with the metric H, we only show that Y is a closed subset of C([0,a}, E™). Let {4n}
be a sequence in Y such that ¢, — ¢ € C([0,a], E™) as n — oco. Then

D(i(t),z0) < D(¥(t), ¥n(t)) + D(¥n(t), 7o),
that is,

H(Q/Jny) - sup D(w(t)’IO) S H(‘/J,wn) + H(wnaw()) S €+ b

0<t<a

for sufficiently large n and arbitrary € > 0. So v € Y. This implies that Y is closed
subset of C([0,a], E™). Therefore Y is a complete metric space.

By using Proposition 2.1 and assumptions (i)-(v), we will show that & is a contrac-
tion mapping. For {,¢¥ € Y,

D(®¢(t), 2y(t))
= D(xo + g(t1,t2, -+ ,tp, (1))
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+ /Ot f (8,5(01(8)),/0s h (3,7,5(02(7))’/;k(T,0,§(<73(6)))d9> dT) ds,

o + 9(t1>t27' o 7tp)1/)('))

[ (s:vtesn. [ 1 (smvtoaon, [ k0, v(oa(0))as ) dr ) ds )

D(g(t17t27 te ,tp’é('))ag(tht% te 7tp?¢(')))

+[[0(s (s, [ 1 (smetoatrn. [ k(r,6,€(ou(0))d8 ) ar ) s,
i (svteron, [ (smw(azm), [ e 6, w(oal0))as ) i ds>
GAD(EC), ¥ + Go [ DIE@(9),(or(s))is
+Gy /OtD (/Oh (3,7,5(02(7)),/OTk(T,O,ﬁ(ag(O)))d6> dr.

| /0 h <5,T,¢(02(T)), /()Tk(f,e,w(ag(o)))de)) d7> ds

G4D(E(), ¥()) + GoGa /0 "D(E(s), (5))ds + GoGi G / / D(¢ ))drds

t ] T
+GoG1G2G3 /0 /0 /0 D(E(g),w(e))deTdS

Then we obtain

IA

INA

IA

t
H(26,89) < sup {Gw(e(-),w(-))  GoGs / D(E(s), (s))ds
+ GoGng /t /SD T) lb(r))d'rds

+ G0G1G2G3/ / / D(E 0))d9d7‘d8}
< G4D(E(-), ¥ () + aGoG3D(£(t), (1))
+a2GoG1G3D(&(t), ¥(t)) + a*GoG1G2G3 D (E(t), ¥ (t))
< pH( %),
where the constant p = G4 + GoGsa + GoG1G3a® + GoG1G,G3a®. Taking sufficiently

small a such that p < 1, we obtain @ to be a contraction mapping. Therefore ® has a
unique fixed point z € C([0, a], E™) such that &z = z, that is,

z(t) = zo + g(t1,t2, -+, tp, 2())
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+/Otf (s,x(al(s)),/osh(s,T,x(Uz(T)),/OTk(T,O,.’E(Ug(B)))d9> dr) ds. O

Theorem 3.2. Let f,h,k,0 and g be as in Theorem 3.1. Denote by z(t, zo),y(t, vo)
the solutions of equation (1) corresponding to xg,yo, respectively. Then there exists
constant ¢ > 0 such that

H(xz(:,%0),y(-,%0)) < aD(zo,%0)
for any zo,y0 € E™ and ¢ =1/(1 — p).

Proof. Let z(t, o), y(t, o) be solutions of equations (1) corresponding to Zo, Yo, respec-
tively. Then

D(z(t, z0),y(t, 0))
= D($O+g(t1)t27 7tpa1"()

+/0t (s 2(01(s) /0 h <s r, (o2 / k(r,0, 2(03(8)))d )dT) ds,

yo + g(t1,t2, -, tp, 9())

* /ot (3 y(r(s) /Osh (8 r,y(o2(r), /OTk(T,H,y(ag(e)))d0> dT) ds)

< D($0,y0)+D( (tl’t2a"' ’tmx('))»g(tl’t?v"' ’tpvy(')))

+/OtD(f(s,x(al(s)),/Osh(s,T,a:(ag('r)),/OTk(T,G,:c(ag(B)))dO) d7>,
j(ame»Aﬁ(gnm@v»Alwﬁwwmmw@dﬁ)w

s.mmmncwuwm»+%@ADm$mmw

+GoC1Gs /0 t /0 "D(a(r), y(r))drds + GoG1G2Gs A t /0 ) /0 " D(x(6),y(8))dbdrds.

Thus H(z(-, z0),¥(-, %)) < D(zo0,%0) + pPH(x(-, Z0),y(,¥0))- that is,

H(z(,z0),y(-,0)) < 1/(1 — p)D(zo, %0)-
This completes the proof of the theorem. |

Next we generalize the above theorem for the fuzzy delay integrodifferential equation
(1)-(2) with nonlocal condition.

Theorem 3.3. Suppose that f : J x E® — E™ h:J x J x E" x E® — E" and
k:JxJxE"™— E™ are level wise continuous and bounded, o; : J — J (i = 1,2,3)
and g : JP x E™ — E™ are continuous.Then the initial value problem (1)-(2) possesses
at least one solution on the interval J.
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Proof. Since f,h, k are continuous and bounded and g is a continuous function there
exists r > 0 such that

( (t z(o1 t))/ <t s, z(02(s)), / k(s, T, z( 03(7')))dr) ds) > <r,teJ,zeE"

Let B be a bounded set in C(J, E™). The set ®B = {®x : x € B} is totally bounded
if and only if it is equicontinuous and for every t € J, the set ®B(t) = {®z(t) : t € J }
is a totally bounded subset of E™. For tg,t; € J With to < t1 and = € B we have that

D(®z(to), ®z(t1))
=D (.’130 + g(t1,t2, T 7tp’x('))

+ /0 s (s,x(al(s)), /0 “h (s,T,m(az(T)), /O ’ k(T,G,:C(Ug(O)))dO) dr) ds,

Zo +g(t17t27" ' ,tp’x('))

+ /0 " (s,:c(al(s)), / “h (s,T,x(Uz(T)), /0 Tk(T,O,a:(U;»,(O)))dO) dr> ds>

D (/0 ° (5 2(01(s)), / <3,T,a:(02(7')), /0 "k, 9,z(a3(9)))d9> dT) ds,

/O Yy (s,x(al(s)), Os h (s,T,x(Uz(T)), /0 ' k(T,H,ﬂ:(Ug(&)))dO) d‘r') ds)

/:D (f (s,x(al(s)), /O “h (s,T,z(ag(T)), / ’ k(T,@,:E(Ug(O)))dQ) dT) ,0) ds
2 —tohsup{ D (200100, [ 0(152602, 1657 a5) )}

<ty —tol-

IA

IA

IA

This shows that ®B is equicontinuous. Now, for t € J fixed, we have
D(®z(t), ®z(t)) < |t -¢'|-r, forevery t' € J, z € B.

Consequently, the set {®z(t) : z € B} is totally bounded in E™. By Ascoli’s theorem
we conclude that ®B is a relatively compact subset of C(J, E™). Then @ is compact,
that is, ® transforms bounded sets into relatively compact sets.

We know that = € C(J, E") is a solution of (1)-(2) if and only if « is a fixed point
of the operator @ defined by (4).

Now, in the metric space (C(J, E™), H), consider the ball

B={¢€C(J,E"),H(¢,0)<m}, m=a-r
Thus, ®B C B. Indeed, for z € C(J, E™),
D(®z(t), ®z(0))
= D(-’Eo +g(t1,t2, 1 tp,2(*))
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+ /O't f <s,9:(01(3)), /Osh (S,T,IL'(O'Z(T))’ Ark(7,6,$(03(0)))d9> dT) ds,

zo+ gltr,ta, sty 0()))

/0 ‘D (f (s,z(al(s)), /0 “h (S,T,CL'(O'Q(T)), /0 Tk(T,H,a:(org(H)))dO) df) ,o) ds

< Jtj-r<a-r.
Therefore, defining 0: J — E™, 0(t) = 0, t € J we have
H(®x, ®0) = sup{D(Pxz(t), ®0(t)) : t € J}.

Therefore ® is compact and, in consequence, it has a fixed point z € B. This fixed
point is a solution of the initial value problem (1)-(2). O

IA
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