• 제목/요약/키워드: Embedded Clock

검색결과 103건 처리시간 0.027초

카운터를 사용하는 시간-디지털 변환기의 설계 (Design of a Time-to-Digital Converter Using Counter)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제20권3호
    • /
    • pp.577-582
    • /
    • 2016
  • 전류 컨베이어를 사용하는 카운터 타입의 동기형 시간-디지털 변환기를 공급전압 3volts에서 $0.18{\mu}m$ CMOS 공정을 이용하여 설계하였다. 비동기 시간-디지털 변환기의 단점을 보완하기 위해 클록은 시작신호가 인가되면 시작신호와 동기화되어 생성된다. 비동기형 시간-디지털 변환기에서 디지털 출력 값의 에러는 클록주기인 $-T_{CK}$에서 $T_{CK}$이다. 그러나 동기형 시간-디지털 변환기의 경우 에러는 0에서 $T_{CK}$이다. 시작신호와 클록의 동기화로 인하여 시간간격 신호를 디지털 값으로 변환할 때 출력 값의 에러 범위는 감소한다. 또한 고주파의 외부 클럭을 사용하지 않음에 따라 회로의 구성이 간단하다. 설계된 시간-디지털 변환기의 동작은 HSPICE 시뮬레이션을 통하여 확인하였다.

내장 자가 검사 회로의 설계 (Design of Built-In Self Test Circuit)

  • 김규철;노규철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.723-728
    • /
    • 1999
  • In this paper, we designed a Circular Path Built-In Self Test circuit and embedded it into a simple 8-bit microprocessor. Register cells of the microprocessor have been modified into Circular Path register cells and each register cells have been connected to form a scan chain. A BIST controller has been designed for controlling BIST operations and its operation has been verified through simulation. The BIST circuit described in this paper has increased size overhead of the microprocessor by 29.8% and delay time in the longest delay path from clock input to output by 2.9㎱.

  • PDF

모바일 기기에 적합한 내장형 3차원 그래픽 렌더링 처리기의 저전력화 (A Low Power Design of The Embedded 3D Graphics Rendering Processor for Portable Device)

  • 장태홍;정종철;우현재;이문기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.593-596
    • /
    • 2004
  • This paper presents a low power design of the embedded 3D graphics rendering processor with the double span processing stage. The increase of hardware complexity by using the double span processing stage is ignorable. And the performance is equal to the rendering processor with the single span processing stage. It reduces the power consumption by using different clock frequencies.

  • PDF

무선 인터넷 데이터링크 레이어의 응답속도를 만족하는 임베디드 시스템 설계 (An Design Of Embedded System for Satisfying Respose Of Wireless Internet Datalink Layer)

  • 오현석;성광수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.1181-1184
    • /
    • 2005
  • In this paper, we proposed small scale real-time operating system for embedded system. Real-time system is characterized by the severe consequences that result if logical as well as timing correctness properties of system are not met. On real-time system, real-time operating system allows real-time applications to be designed and expanded easily. Functions can be added without requiring major changes to the software. We design small scale real-time operating system for preemptive kernel, and design kernel component such as multitasking, scheduler, task priority, semaphore, inter-task communication, clock tick timer, ISR(Interrupt Service Routine) mechanism has low interrupt latency.

  • PDF

유한체 GF(2m)상의 낮은 지연시간의 AB2 곱셈 구조 설계 (Design of Low-Latency Architecture for AB2 Multiplication over Finite Fields GF(2m))

  • 김기원;이원진;김현성
    • 대한임베디드공학회논문지
    • /
    • 제7권2호
    • /
    • pp.79-84
    • /
    • 2012
  • Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.

매니코어 프로세서 상에서 이산 웨이블릿 변환을 위한 성능 평가 및 분석 (Performance Evaluation and Analysis for Discrete Wavelet Transform on Many-Core Processors)

  • 박용훈;김종면
    • 대한임베디드공학회논문지
    • /
    • 제7권5호
    • /
    • pp.277-284
    • /
    • 2012
  • To meet the usage of discrete wavelet transform (DWT) on potable devices, this paper implements 2-level DWT using a reference many-core processor architecture and determine the optimal many-core processor. To explore the optimal many-core processor, we evaluate the impacts of a data-per-processing element ratio that is defined as the amount of data mapped directly to each processing element (PE) on system performance, energy efficiency, and area efficiency, respectively. This paper utilized five PE configurations (PEs=16, 64, 256, 1,024, and 4,096) that were implemented in 130nm CMOS technology with a 720MHz clock frequency. Experimental results indicated that maximum energy and area efficiencies were achieved at PEs=1,024. However, the system area must be limited 140mm2 and the power should not exceed 3 watts in order to implement 2-level DWT on portable devices. When we consider these restrictions, the most reasonable energy and area efficiencies were achieved at PEs=256.

A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control

  • Cha, Soo-Ho;Jeong, Chun-Seok;Yoo, Chang-Sik
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.463-469
    • /
    • 2007
  • A phase-locked loop (PLL) is described which is operable from 0.4 GHz to 1.2 GHz. The PLL has basically the same architecture as the conventional analog PLL except the locking information is stored as digital code. An analog-to-digital converter is embedded in the PLL, converting the analog loop filter output to digital code. Because the locking information is stored as digital code, the PLL can be turned off during power-down mode while avoiding long wake-up time. The PLL implemented in a 0.18 ${\mu}m$ CMOS process occupies 0.35 $mm^2$ active area. From a 1.8 V supply, it consumes 59 mW and 984 ${\mu}W$ during the normal and power-down modes, respectively. The measured rms jitter of the output clock is 16.8 ps at 1.2 GHz.

  • PDF

차세대 CPU를 위한 캐시 메모리 시스템 설계 (Design of Cache Memory System for Next Generation CPU)

  • 조옥래;이정훈
    • 대한임베디드공학회논문지
    • /
    • 제11권6호
    • /
    • pp.353-359
    • /
    • 2016
  • In this paper, we propose a high performance L1 cache structure for the high clock CPU. The proposed cache memory consists of three parts, i.e., a direct-mapped cache to support fast access time, a two-way set associative buffer to reduce miss ratio, and a way-select table. The most recently accessed data is stored in the direct-mapped cache. If a data has a high probability of a repeated reference, when the data is replaced from the direct-mapped cache, the data is stored into the two-way set associative buffer. For the high performance and fast access time, we propose an one way among two ways set associative buffer is selectively accessed based on the way-select table (WST). According to simulation results, access time can be reduced by about 7% and 40% comparing with a direct cache and Intel i7-6700 with two times more space respectively.

SOC 설계를 위한 저전력 32-비트 RISC 프로세서의 재사용 가능한 설계 (Resuable Design of 32-Bit RISC Processor for System On-A Chip)

  • 이세환;곽승호;양훈모;이문기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.105-108
    • /
    • 2001
  • 4 32-bit RISC core is designed for embedded application and DSP. This processor offers low power consumption by fully static operation and compact code size by efficient instruction set. Processor performance is improved by wing conditional instruction execution, block data transfer instruction, multiplication instruction, bunked register file structure. To support compact code size of embedded application, It is capable cf executing both 16-bit instructions and 32-bit instruction through mixed mode instruction conversion Furthermore, for fast MAC operation for DSP applications, the processor has a dedicated hardware multiplier, which can complete a 32-bit by 32-bit integer multiplication within seven clock cycles. These result in high instruction throughput and real-time interrupt response. This chip is implemented with 0.35${\mu}{\textrm}{m}$, 4- metal CMOS technology and consists of about 50K gate equivalents.

  • PDF

고성능 PCM&DRAM 하이브리드 메모리 시스템 (High Performance PCM&DRAM Hybrid Memory System)

  • 정보성;이정훈
    • 대한임베디드공학회논문지
    • /
    • 제11권2호
    • /
    • pp.117-123
    • /
    • 2016
  • In general, PCM (Phase Change Memory) is unsuitable as a main memory because it has limitations: high read/write latency and low endurance. However, the DRAM&PCM hybrid memory with the same level is one of the effective structures for a next generation main memory because it can utilize an advantage of both DRAM and PCM. Therefore, it needs an effective page management method for exploiting each memory characteristics dynamically and adaptively. So we aim reducing an access time and write count of PCM by using an effective page replacement. According to our simulation, the proposed algorithm for the DRAM&PCM hybrid can reduce the PCM access count by around 60% and the PCM write count by 42% given the same PCM size, compared with Clock-DWF algorithm.