• Title/Summary/Keyword: Elliptic Equation

Search Result 195, Processing Time 0.022 seconds

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

MOUNTAIN PASS GEOMETRY APPLIED TO THE NONLINEAR MIXED TYPE ELLIPTIC PROBLEM

  • Jung Tacksun;Choi Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.419-428
    • /
    • 2009
  • We show the existence of at least one nontrivial solution of the homogeneous mixed type nonlinear elliptic problem. Here mixed type nonlinearity means that the nonlinear part contain the jumping nonlinearity and the critical growth nonlinearity. We first investigate the sub-level sets of the corresponding functional in the Soboles space and the linking inequalities of the functional on the sub-level sets. We next investigate that the functional I satisfies the mountain pass geometry in the critical point theory. We obtain the result by the mountain pass method, the critical point theory and variational method.

  • PDF

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong;Hessari, Peyman;Shin, Byeong-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.595-612
    • /
    • 2014
  • The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.

ANNULUS CRITERIA FOR OSCILLATION OF SECOND ORDER DAMPED ELLIPTIC EQUATIONS

  • Xu, Zhiting
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1183-1196
    • /
    • 2010
  • Some annulus oscillation criteria are established for the second order damped elliptic differential equation $$\sum\limits_{i,j=1}^N D_i[a_{ij}(x)D_jy]+\sum\limits_{i=1}^Nb_i(x)D_iy+C(x,y)=0$$ under quite general assumption that they are based on the information only on a sequence of annuluses of $\Omega(r_0)$ rather than on the whole exterior domain $\Omega(r_0)$. Our results are extensions of those due to Kong for ordinary differential equations. In particular, the results obtained here can be applied to the extreme case such as ${\int}_{\Omega(r0)}c(x)dx=-\infty$.

A STUDY OF SPECTRAL ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH NONSMOOTH SOLUTIONS IN ℝ2

  • KUMAR, N. KISHORE;BISWAS, PANKAJ;REDDY, B. SESHADRI
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.311-334
    • /
    • 2020
  • The solution of the elliptic partial differential equation has interface singularity at the points which are either the intersections of interfaces or the intersections of interfaces with the boundary of the domain. The singularities that arises in the elliptic interface problems are very complex. In this article we propose an exponentially accurate nonconforming spectral element method for these problems based on [7, 18]. A geometric mesh is used in the neighbourhood of the singularities and the auxiliary map of the form z = ln ξ is introduced to remove the singularities. The method is essentially a least-squares method and the solution can be obtained by solving the normal equations using the preconditioned conjugate gradient method (PCGM) without computing the mass and stiffness matrices. Numerical examples are presented to show the exponential accuracy of the method.

THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES

  • LEE, HYUNG-CHUN;LEE, GWOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.387-407
    • /
    • 2015
  • This paper analyzes the $h{\times}p$ version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the $h{\times}p$ error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.

A CONSISTENT DISCONTINUOUS BUBBLE SCHEME FOR ELLIPTIC PROBLEMS WITH INTERFACE JUMPS

  • KWONG, IN;JO, WANGHYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.143-159
    • /
    • 2020
  • We propose a consistent numerical method for elliptic interface problems with nonhomogeneous jumps. We modify the discontinuous bubble immersed finite element method (DB-IFEM) introduced in (Chang et al. 2011), by adding a consistency term to the bilinear form. We prove optimal error estimates in L2 and energy like norm for this new scheme. One of the important technique in this proof is the Bramble-Hilbert type of interpolation error estimate for discontinuous functions. We believe this is a first time to deal with interpolation error estimate for discontinuous functions. Numerical examples with various interfaces are provided. We observe optimal convergence rates for all the examples, while the performance of early DB-IFEM deteriorates for some examples. Thus, the modification of the bilinear form is meaningful to enhance the performance.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

A Fast Multiplication Method for Elliptic Curves defined on small finite fields (작은 유한체 위에 정의된 타원곡선의 고속연산 방법)

  • 박영호;정수환
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.45-51
    • /
    • 2002
  • As Koblitz curve, the Frobenius endomorphism is know to be useful in efficient implementation of multiplication on non-supersingular elliptic cures defined on small finite fields of characteristic two. In this paper a method using the extended Frobenius endomorphism to speed up scalar multiplication is introduced. It will be shown that the proposed method is more efficient than Muller's block method in [5] because the number of point addition for precomputation is small but on the other hand the expansion length is almost same.