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ABSTRACT. This paper analyzes the h × p version of the finite element method for optimal
control problems constrained by elliptic partial differential equations with random inputs. The
main result is that the h × p error bound for the control problems subject to stochastic partial
differential equations leads to an exponential rate of convergence with respect to p as for the
corresponding direct problems. Numerical examples are used to confirm the theoretical results.

1. INTRODUCTION

The finite element method (FEM) has been used as a major tool to solve partial differential
equations (PDEs), PDEs with random inputs or stochastic PDEs (SPDEs), and optimal control
problems constrained by PDEs or SPDEs. There are three basic approaches to the FEM: the h
version, the p version, and the h-p version of the FEM.

The h version of the FEM is the classical form of the FEM that has been used extensively
for many years producing both theoretical and computational results. In the h version of the
FEM, we fix the polynomial degree p, and then we reduce the mesh size h to obtain the desired
accuracy. In contrast, in the p version of the FEM, we use a fixed mesh h and increase the
polynomial degree p to get more accurate approximations. In the h-p version, we combine
the h version and the p version approaches to get better results; i.e., we refine the mesh and
increase the polynomial degree to have the numerical solutions converge faster to the exact
solution.

In recent years, there has been an increasing interest in the h-p version of the Galerkin FEM
(GFEM) including the discontinuous GFEM (DGFEM) [1, 2, 3, 4, 5] and the stochastic GFEM
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(SGFEM) [6, 7, 8]. All these works are considering the h and/or p error bounds for only direct
problems such as PDEs or SPDEs, not for control problems. It is well known that a control
problem adds difficulties to the analysis of (stochastic) PDEs because of its flexible input data
to control and its cost functional to be optimized; and hence, solving the control problem is
a challenge. In our work we introduce the h × p version of the SGFEM for optimal control
problems subject to stochastic elliptic problems. We then show for this h× p version approach
that an exponential convergence rate with respect to p for the optimal control problems can be
obtained.

The problem we consider is the optimization problem

J (u, f) = E
[
1

2

∫
D
|u− U |2 dx+

β

2

∫
D
|f |2 dx

]
(1.1)

constrained by the stochastic elliptic PDE under the Dirichlet boundary condition:

−∇ · [a(x, ω)∇u(x, ω)] = f(x) in D,

u(x, ω) = 0 on ∂D,
(1.2)

where E denotes expected value, D a convex bounded polygonal domain, ∂D its C1 boundary,
U a target solution to the constraint, β a positive constant that says the importance between two
terms in (1.1), a : D × Ω → R is a stochastic function with a bounded, continuous covariance
function and a uniformly bounded, continuous first derivative, and f ∈ L2(D) a deterministic
distributed control acting in the domain. For almost every ω ∈ Ω, with a flexible input f , we
look for a solution u, stochastic function from D×Ω to R to optimize our functional (1.1). We
would like to mention here that ∇ means differentiation with respect to x ∈ D only.

To analyze our optimal control problem using the h × p version approach, we use the
Karhunan-Loéve (KL) expansion [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], transform stochastic PDEs
to deterministic high dimensional PDEs, and present a priori error estimates of the h × p ver-
sion of the SGFEM to the transformed model equation. After that, by using the method of
Lagrange multipliers, we derive the optimality system of equations. Then we apply the theory
of Brezzi-Rappaz-Raviart (BRR) [16, 17, 18, 19, 20] in uncoupling the optimality system, so
that we can develop a priori error estimate that gives exponentially fast convergent results for
the optimal solution of our optimal control problem.

Some remarks about the literature are in order. In 1980s, the p version was first studied in
[21], and its theoretical results show that the p version gives results that are not worse then
those obtained by the h version of the FEM when quasiuniform triangulations are used. In
[22, 23, 24], the detailed error analysis of the h, p, and h-p versions of the FEM in a one
dimensional setting was given. In [25], the exponential rate of the convergence of the h-p
version is proved in a special geometric domain such as a square or a parallelogram. The
work [26] analyzes the convergence of the h-p version of the FEM for elliptic problems with
piecewise analytic data on curved domains. In [27], the author generalized the exponential rate
of convergence of the h-p version of the FEM for elliptic equations of order 2m.

In 1990s, it is shown in [28] that the auxiliary mapping technique in the frame of the p
version of the FEM yields an exponential rate of convergence on domains with corners and
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infinite domains. In [29], the fundamental theoretical ideas behind the p version and h-p version
were discussed, and a benchmark comparison between the various versions was included. In
[30], a new FEM method, the “partition of unity FEM”, was presented that can be understood
as a generalization of the h, p, and h-p versions of the FEM and more efficient than the usual
FEM. In [31], the h-p version of the FEM was used to investigate the Galerkin FE solution to
the Helmholtz equation.

In 2000s, the work [5] analyzes the h-p version of the DGFEM for the time discretization
of parabolic equations to obtain exponential convergence results without severe restrictions on
the space discretization. In [2], optimal convergence rates for the h-p version of the DGFEM
to general advection diffusion-reaction problems were shown. In [3], the h-p version of the
DGFEM was considered for the biharmonic equation to establish an a prior error estimate
which is of optimal order with respect to the mesh h and nearly optimal with respect to the
polynomial degree p. The work [1] uses the h-p version interior penalty DGFEM for second-
order linear reaction-diffusion equations to obtain improved optimal error estimates. It is shown
in [6] that the h × p version of the SGFEM method yields an exponential rate of convergence
with respect to p for stochastic elliptic problems. In [4], the DGFEM to the biharmonic equa-
tion was used to obtain the h-p version bounds that are optimal with respect to the mesh size h
and suboptimal with respect to the degree of the piecewise polynomial p.

There have been also papers by other authors published on the subject of optimal control
with SPDE constraints (e.g., see recent three publications [32, 33, 34] and references therein).
In [32], the authors proved the uniqueness of the optimal solution to the stochastic saddle prob-
lem after showing that it is equivalent to their optimality system. In [33], the computational
solutions of optimal control problems constrained by SPDEs with uncertain controls were in-
vestigated, demonstrating the application of their methods via numerical examples. In the
work [34], the authors examined the use of stochastic collocation for the numerical solution
of optimal control problems subject to SPDEs, discussing generalized polynomial chaos thor-
oughly and presenting computational examples to show the performance of their method. Also,
after finishing this paper the authors became aware of the work [35] including recent develop-
ments on the adaptive stochastic Galerkin FEM approches, which gives us some future research
ideas. In the work [35], the authors developed adaptive refinement algorithms for SGFEM for
countably-parametric, elliptic boundary value problems and proved the convergence of their
adaptive algorithm.

The plan of the paper is as follows. In Section 2, we introduce stochastic function spaces and
notations and then mention the uniqueness of the solution to our direct problems. In Section
3, we deal models with finite dimensional information and their h × p version error bounds
on the solution of the models. In Section 4, we establish the h × p version error estimates to
the discrete approximations of the solution to our optimal control problem. Finally, in Section
5, we give numerical examples of stochastic optimal control problems to verify our theoretical
results.
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2. UNIQUENESS OF THE SOLUTION

Let (Ω,F , P ) be a complete probability space, where Ω is a set of outcomes, F is a σ-
algebra of events, and P : F → [0, 1] is a probability measure. Also, we use standard Sobolev
space notation (see [36]). With this in mind, we define a stochastic Sobolev space as follows
using strongly measurable functions:

L2(Ω;H1
0 (D)) = {v : D × Ω → R | ∥v∥L2(Ω;H1(D)) <∞},

where

∥v∥2L2(Ω;H1
0 (D)) =

∫
Ω
∥v∥2H1

0 (D) dP = E[∥v∥2H1
0 (D)].

Similarly, we can define L2(Ω;L2(D)). Then for simplicity, we let L2(D) = L2(Ω;L2(D))
and H1

0(D) = L2(Ω;H1
0 (D)).

We use the following notations to make our problem expressed easily:

b[u, v] = E
[∫

D
a∇u · ∇v dx

]
(2.1)

and

[u, v] = E
[∫

D
uv dx

]
. (2.2)

Using notations (2.1) and (2.2), we have the weak formulation of (1.2): seek u ∈ H1
0(D)

such that
b[u, v] = [f, v] ∀v ∈ H1

0(D). (2.3)
In this paper, we assume that there are positive m and M such that

m ≤ a(x, ω) ≤M a.e. (x, ω) ∈ D × Ω. (2.4)

For the condition (2.4), as a practical example, a could have a log normal distribution (see
[37]).

Then from the Lax-Milgram lemma (see [38]), for f ∈ L2(D), we have a unique solution
to (2.3).

3. THE h × p VERSION ERROR BOUNDS FOR HIGH-DIMENSIONAL MODELS

3.1. High-dimensional problems. We use the KL expansions (e.g., see [7, 8, 39, 40]) to ana-
lyze our problem: If a(x, ω) is a stochastic function that has a continuous and bounded covari-
ance function, it can be represented by

a(x, ω) = E[a(x, ω)] +
∑
n≥1

√
λnϕn(x)Xn(ω), (3.1)

where the real random variables, {Xn}, are mutually uncorrelated, E[XnXm] = δnm, E[Xn] =
0, and (λn, ϕn) are solutions to∫

D
C(x1, x2)ϕn(x1) dx1 = λnϕn(x2), (3.2)
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where C(x1, x2) = E[a(x1, ω)a(x2, ω)] − E[a(x1, ω)]E[a(x2, ω)]. (3.1) is called the KL ex-
pansion of a(x, ω), and its convergence result can be found in [6].

In this paper, we use the truncated KL expansion of a(x, ω)

a(x, ω) = E[a(x, ω)] +
N∑
n=1

√
λnϕn(x)Xn(ω), (3.3)

and we focus on our control problems to practical situations. To have the unique solution to
the problem with (3.3), we assume that there exist m,M > 0 such that

m ≤ a(x, ω) ≤M a.e. (x, ω) ∈ D × Ω. (3.4)

We also assume that each Xn(Ω) ≡ Γn ⊂ R is a bounded interval for n = 1, 2, · · · , N
and that each Xn has a density function ρn : Γn → R+. We use the joint density ρ(y)

for any y ∈ Γ =
∏N
n=1 Γn ⊂ RN of (X1, X2, · · · , XN ). Under these assumptions, the so-

lution of (2.3) can be expressed by the finite number of random variables; i.e., u(x, ω) =
u(x,X1(ω), X2(ω), · · · , XN (ω)); see e.g., [9, 6, 11]. Then we have the following high-
dimensional deterministic equivalent weak formulation of (2.3) that we will focus on through-
out the paper:∫

Γ
ρ(y)

∫
D
a(x, y)∇u(x, y) · ∇v(x, y) dxdy =

∫
Γ
ρ(y)

∫
D
f(x)v(x, y) dxdy. (3.5)

The strong formulation of (3.5) is

−∇ · [a(x, y)∇u(x, y)] = f(x) ∀(x, y) ∈ D × Γ,

u(x, y) = 0 ∀(x, y) ∈ ∂D × Γ
(3.6)

with its weak formulation: seek u ∈ H1
0(D) such that for all v ∈ H1

0(D),

b[u, v] = [f, v]; (3.7)

Note that we have well-posedness of (3.6) because a is bounded and that by using the tradi-
tional finite element method, we can provide the solution to a SPDE from solving (3.6).

For our high-dimensional problem, we use the following space and notions:

H1
0(D) = L2(Γ;H1

0 (D)) = {v : D × Γ → R | ∥v∥L2(Γ;H1
0 (D)) <∞},

b[u, v] =

∫
Γ
ρ

∫
D
a∇u · ∇v dxdy,

and

[u, v] =

∫
Γ
ρ

∫
D
uv dxdy.
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3.2. Error bounds of high-dimensional problems. Let Xh ⊂ H1
0 (D) and Gh ⊂ L2(D) be

finite element spaces that consist of piecewise linear continuous functions. We assume that the
following usual properties hold:

(i) for all ϕ ∈ H2(D) ∩H1
0 (D), there exists C > 0 such that

inf
ϕh∈Xh

∥ϕ− ϕh∥H1
0 (D) ≤ Ch∥ϕ∥H2(D); (3.8)

(ii) for all ϕ ∈ H1
0 (D), there exists C > 0 such that

inf
ϕh∈Gh

∥ϕ− ϕh∥L2(D) ≤ Ch∥ϕ∥H1
0 (D). (3.9)

For the space Γ, we define the following finite element space with pn that is the maximum
degree of polynomial in a yn-direction:

Pφ = Pφ1
1 ⊗Pφ2

2 ⊗ · · · ⊗ PφN
N ,

where φn = 1/pn, φ = (φ1, φ2, · · · , φN ), and

Pφn
n = {v : Γn → R : v ∈ span(1, yn, y

2
n, · · · , y1/φn

n )}.
We now consider the following finite element weak formulation in W = Xh ⊗ Pφ: find

uhφ ∈W such that for all vhφ ∈W ,

b[uhφ, vhφ] = [f, vhφ]. (3.10)

We also consider the following approximation property (e.g., see [6]).

Proposition 3.1. Let u ∈ Cp+1(Γ;H2(D) ∩H1
0 (D)) with p = (p1, p2, · · · , pN ). Then there

exists a positive constant C, which is independent of h, δ,N , and p, such that

inf
w∈W

∥u− w∥H1
0(D) ≤ C

h∥u∥H2(D) + δγ
N∑
j=1

∥∂pj+1
yj u∥H1

0(D)

(pj + 1)!

 , (3.11)

where 0 < δ = max
1≤j≤N

|Γj |/2 < 1 and γ = min
1≤j≤N

{pj + 1}.

Then we have the following result follows from (3.11).

Proposition 3.2. Let f(x) ∈ L2(D), u and uhφ be the solutions of (3.7) and (3.10), respec-
tively. Then there exists C > 0 such that

∥u− uhφ∥H1
0(D) ≤ C(h+ δγ)K∥f∥L2(D),

where K =
∑N

j=1max{1, ∥ϕj∥
pj+1

L∞(D)}.

Remark 3.3. With the same assumptions in Proposition 3.2, we have

∥E[u− uhφ]∥H1
0 (D) ≤ C(h+ δγ)K, (3.12)

where K =
∑N

j=1max{1,
√
λj∥ϕj∥

pj+1

L∞(D)}.
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Remark 3.4. For problems with g(x, y) ∈ Cp+1(Γ;L2(D)), we have

∥u− uhφ∥H1
0(D) ≤ C(h+ δγ)K∥g∥L2(D), (3.13)

where K =
∑N

j=1max{1, ∥ϕj∥
pj+1

L∞(D),
∑pj+1

k=1 ∥ϕj∥
pj+1−k
L∞(D) ∥∂

k
yjg∥L2(D)}.

Note that Proposition 3.2 gives the optimal order of convergence with respect to δ (recall
δ = max

1≤j≤N
|Γj |/2), not with respect to p (recall γ = min

1≤j≤N
{pj + 1}) unless we assume that

each |Γj | < 2, 1 ≤ j ≤ N . So, here we try to improve this situation in the following theorem
without the need of assumptions on Γj .

Theorem 3.5. Let ϵ ∈ (0, 1), n ∈ {1, 2, · · · , N}, f(x) ∈ L2(D), and u and uhφ be the solu-
tions of (3.7) and (3.10), respectively. Assume that there exists a constant c > 0, independent
of N , such that

min
x∈D

{E[a(x, y)] +
∑

1≤j≤N,j ̸=n

√
λjϕj(x)yj} −

√
λn∥ϕn∥L∞(D) max

y∈Γn

|y| ≥ c > 0

for any (y1, y2, · · · , yn−1, yn+1, · · · , yN ) ∈
∏

1≤j≤N,j ̸=n Γj . Then there exists C > 0 such
that

∥u− uhφ∥H1
0(D) ≤

C

(
h∥f∥L2(D) + ϵ−1

N∑
i=1

√
π|Γ|

(
1 + (1− r2i )

−1/2O(φ
1/3
i )

)
(ri)

1+1/φi

)
.

PROOF: Note that because the solution u ∈ H1
0(D) of (3.5) is analytic with respect to y ∈ Γ

onto the space H1
0 (D)⊗Pφ (e.g., see [6]), there exists a constant C > 0 such that

min
v∈H1

0 (D)⊗Pφ
∥u− v∥H1

0(D) ≤
C

ϵc

N∑
i=1

√
π|Γ|

(
1 + (1− r2i )

−1/2O(φ
1/3
i )

)
(ri)

1+1/φi ,

where 0 < ri ≡ (
√
σ2i − 1 + |σi|)−1 < 1 and σi <

2c(ϵ− 1)

|Γi|
√
λi∥ϕi∥L∞(D)

.

Note also that we have

∥u− uhφ∥H1
0(D) ≤ C min

v∈Xh⊗Pφ
∥u− v∥H1

0(D)

≤ C

(
min

v∈Xh⊗L2(Γ)
∥u− v∥H1

0(D) + min
v∈H1

0 (D)⊗Pφ
∥u− v∥H1

0(D)

)

≤ C

(
h∥u∥H2(D) + min

v∈H1
0 (D)⊗Pφ

∥u− v∥H1
0(D)

)
for some C > 0.
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Then the last two inequalities with H2-regularity imply that

∥u− uhφ∥H1
0(D) ≤

C

(
h∥f∥L2(D) + ϵ−1

N∑
i=1

√
π|Γ|

(
1 + (1− r2i )

−1/2O(φ
1/3
i )

)
(ri)

1+1/φi

)
for some positive constant C.

Remark 3.6. With the same assumptions in Theorem 3.5, there exist a constant C > 0 such
that

∥E[u− uhφ]∥H1
0 (D) ≤ C(h+ ϵ−1

N∑
i=1

(ri)
1+1/φi), (3.14)

where 0 < ri < 1 as in the proof of Theorem 3.5 above.

Remark 3.7. For problems with g(x, y) ∈ Cp+1(Γ;L2(D)), we have

∥u− uhφ∥H1
0(D) ≤

C

(
h∥g∥L2(D) + ϵ−1

N∑
i=1

√
π|Γ|

(
1 + (1− r2i )

−1/2O(φ
1/3
i )

)
(ri)

1+1/φi

)
.

4. THE h × p VERSION ERROR BOUND FOR OPTIMAL CONTROL PROBLEMS

In this section, we derive the optimality system for our control problem constrained by ellip-
tic PDE with random inputs and then analyze the control problem using the Brezzi-Rappaz-
Raviart (BRR) theory obtaining its error bound. Throughout this section, we assume that
f ∈ L2(D) for regularity of the solution.

4.1. The optimality system. We define the admissibility set as follows:

Uad = {(u, f) ∈ H1
0(D)× L2(D) such that (2.3) satisfied and J (u, f) <∞}. (4.1)

Then there exists an optimal solution (û, f̂) ∈ Uad of J (u, f) such that J (û, f̂) ≤ J (u, f)

for all (u, f) ∈ Uad satisfying ∥u− û∥H1
0(D) + ∥f − f̂∥L2(D) ≤ ϵ for some ϵ > 0.

Also, if (u, f) ∈ H1
0(D)× L2(D) be an optimal solution of

min
(u,f)∈Uad

J (u, f) subject to b[u, v] = [f, v] ∀v ∈ H1
0(D), (4.2)

then there exists a Lagrange multiplier ξ ∈ H1
0(D) such that

b[ξ, ζ] = [u− U, ζ] ∀ζ ∈ H1
0(D) (4.3)

and
[βf + ξ, z] = 0 ∀z ∈ L2(D). (4.4)
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Remark 4.1. The system formed by equations

b[u, v] = [f, v] ∀v ∈ H1
0(D),

b[ξ, ζ] = [u− U, ζ] ∀ζ ∈ H1
0(D), and (4.5)

[βf + ξ, z] = 0 ∀z ∈ L2(D).

is called an optimality system. By solving this system, we can find the optimal solution of (4.2).

4.2. The Brezzi-Rappaz-Raviart theory. Here for the sake of completeness, we will state
the relevant result based on the BRR theory for our needs (for details, see [41, 42, 43]).

For Banach spaces X and Y , let T ∈ L(Y;X ) and G be a C2 mapping from X into Y . Then
we consider the following nonlinear problem: Seek ψ ∈ X such that

ψ + T G(ψ) = 0. (4.6)

We assume that ψ is a regular solution of (4.6) and that there exists a Banach space Z continu-
ously embedded in Y such that

Gψ(ψ) ∈ L(X ;Z) ∀ψ ∈ X , (4.7)

where Gψ is the Fréchet derivative of G with respect to ψ.
Let X h be a finite dimensional subspace of X and T h ∈ L(Y;X h) be an approximating

operator. We assume the following properties for T h:

lim
h→0

∥(T h − T )ω∥X = 0 ∀ω ∈ Y; (4.8)

lim
h→0

∥T h − T ∥L(Z;X ) = 0. (4.9)

Then we set the following approximate problem to the nonlinear problem above: Seek ψh ∈
X h such that

ψh + T hG(ψh) = 0. (4.10)
We finally assume that D2G is bounded on all bounded sets of X , where D2G represents

any and all second Fréchet derivatives of G.
Then with all assumptions above, there exists a neighborhood O of the origin in X and, for

h ≤ h0 small enough, a unique ψh ∈ X h such that ψh is a regular solution of (4.10). Moreover,
there exists a constant C > 0, independent of h, such that

∥ψh − ψ∥X ≤ C∥(T h − T )G(ψ)∥X . (4.11)

4.3. Error bound of optimal control problems. In this section, we first fit our optimality
system and its discrete approximation into the BRR framework such as (4.6) and (4.10) so that
we can use the BRR theory. Then by proving all assumptions in Section 4.2, we get a error
bound for our control problem constrained by PDEs with random inputs.

We set X = H1
0(D)×L2(D)×H1

0(D) and Y = H−1(D)×H−1(D) and define the linear
operator T ∈ L(Y;X ) as follows:

(ũ, f̃ , ξ̃) = T (r̃, τ̃)
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if and only if
b[ũ, v] = [r̃, v] ∀v ∈ H1

0(D), (4.12)

b[ξ̃, ζ] = [τ̃ , ζ] ∀ζ ∈ H1
0(D), (4.13)

and
[βf̃ + ξ̃, z] = 0 ∀z ∈ L2(D). (4.14)

We also define G : X → Y by

G(ũ, f̃ , ξ̃) = (−f̃ ,−ũ+ U).

Then the optimality system (2.3), (4.3), and (4.4) can be written as

(u, f, ξ) + T (G(u, f, ξ)) = 0. (4.15)

We now set X hφ = W ×Gh ×W , where W = Xh ⊗ Pφ and define the discrete operator
T hφ ∈ L(Y;X hφ) as follows:

(ũhφ, f̃h, ξ̃hφ) = T hφ(r̃, τ̃)

if and only if
b[ũhφ, vhφ] = [r̃, vhφ] ∀vhφ ∈W, (4.16)

b[ξ̃hφ, ζhφ] = [τ̃ , ζhφ] ∀ζhφ ∈W, (4.17)

and
[βf̃h + ξ̃hφ, zh] = 0 ∀zh ∈ Gh. (4.18)

Then the discrete optimality system

b[uhφ, vhφ] = [fh, vhφ] ∀vhφ ∈W,

b[ξhφ, ζhφ] = [uhφ − U, ζhφ] ∀ζhφ ∈W, and (4.19)

[βfh + ξhφ, zh] = 0 ∀zh ∈ Gh

can be written as
(uhφ, fh, ξhφ) + T hφ(G(uhφ, f, ξhφ)) = 0.

We now proceed to verify all assumptions mentioned in Section 4.2. To do this, we define
first a space Z = L2(D) × L2(D), which is continuously embedded into Y = H−1(D) ×
H−1(D).

We denote the Fréchet derivative of G with respect to (u, f, ξ) by DG(u, f, ξ). Then we
obtain for (u, f, ξ) ∈ X ,

DG(u, f, ξ) · (ũ, f̃ , ξ̃) = (−f̃ ,−ũ) ∀(ũ, f̃ , ξ̃) ∈ X .

We now state the following propositions to have the error analysis for our optimal control
problems constrained by PDEs with random inputs.

Proposition 4.2. DG(u, f, ξ) ∈ L(X ;Z) for all (u, f, ξ) ∈ X .
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PROOF: Note that we have

∥DG(u, f, ξ) · (ũ, f̃ , ξ̃)∥Z = ∥f̃∥L2(D) + ∥ũ∥L2(D)

≤ ∥f̃∥L2(D) + ∥ũ∥H1
0(D) + ∥ξ̃∥H1

0(D) <∞. (4.20)

Then the result follows using (4.20).

Proposition 4.3. D2G is bounded on all bounded sets of X .

PROOF: This can be shown from the fact that for any (u, f, ξ) ∈ X ,

D2G(u, f, ξ) · (ũ, f̃ , ξ̃) = (0, 0) ∀(ũ, f̃ , ξ̃) ∈ X .

Proposition 4.4. For any (r̃, τ̃) ∈ Y , ∥(T − T hφ)(r̃, τ̃)∥X → 0 as h, φ→ 0.

PROOF: We have

∥(T − T hφ)(r̃, τ̃)∥X = ∥(ũ− ũhφ, f̃ − f̃h, ξ̃ − ξ̃hφ)∥X (4.21)

= ∥ũ− ũhφ∥H1
0(D) + ∥ξ̃ − ξ̃hφ∥H1

0(D) + ∥f̃ − f̃h∥L2(D)

First, we show ∥ũ− ũhφ∥H1
0(D) → 0 as h, φ→ 0.

Let ϵ > 0 and let r̃ ∈ H−1(D). Then there exists a sequence of C∞ functions {r̃n} ⊂
L2(D) such that ∥r̃n − r̃∥H−1(D) → 0 as n → 0. That is, for some r̃n0 ∈ {r̃n}, we have
∥r̃n0 − r̃∥H−1(D) < ϵ.

We now use our weak formulation (3.7) with r̃n0 to get the following inequality for some
C > 0:

∥ũ− ũn0∥H1
0(D) < ϵC,

where ũn0 is a weak solution.
Similarly, with (3.10), we get the following result: there is a constant C > 0 such that

∥ũhφ − ũhφn0
∥H1

0(D) < ϵC,

where ũhφn0 is a weak solution.
These two inequalities imply that

∥ũ− ũhφ∥H1
0(D) ≤ ∥ũ− ũn0∥H1

0(D) + ∥ũn0 − ũhφn0∥H1
0(D) + ∥ũhφn0

− ũhφ∥H1
0(D)

≤ ∥ũn0 − ũhφn0
∥H1

0(D)

since ϵ is arbitrary. Then ∥ũ− ũhφ∥H1
0(D) → 0 as h, φ→ 0 from Theorem 3.5.

Similarly, ∥ξ̃ − ξ̃hφ∥H1
0(D) → 0 as h, φ→ 0.

Now we want to show that ∥f̃ − f̃h∥L2(D) → 0 as h → 0. Note from using (4.14) and
(4.18), we obtain

[f̃ − f̃h, f̃ − f̃h] = [f̃ − f̃h, f̃ − gh] + 1/β[ξ̃ − ξ̃hφ, f̃h − f̃ + f̃ − gh].
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Then by the Hölder, Cauchy, and Young inequalities, we have

∥f̃ − f̃h∥2L2(D) ≤ ∥f̃ − f̃h∥L2(D)∥f̃ − gh∥L2(D)

+ 1/β∥ξ̃ − ξ̃hφ∥L2(D)∥f̃h − f̃∥L2(D)

+ 1/β∥ξ̃ − ξ̃hφ∥L2(D)∥f̃ − gh∥L2(D) (4.22)

≤ 1/4∥f̃ − f̃h∥2L2(D) + ∥f̃ − gh∥2L2(D)

+ 1/β∥ξ̃ − ξ̃hφ∥2L2(D) + 1/4∥f̃h − f̃∥2L2(D)

+ 1/(2β)∥ξ̃ − ξ̃hφ∥2L2(D) + 1/2∥f̃ − gh∥2L2(D).

The Inequality (4.22) implies that

∥f̃ − f̃h∥2L2(D) ≤ C(∥ξ̃ − ξ̃hφ∥2L2(D) + ∥f̃ − gh∥2L2(D))

for someC > 0. Here we note that from (4.14) and the Hölder inequality, we have
∫
D |∇f̃ |2 dx <

∞. With choosing gh = P h(f̃), where P h is the standard L2-projection operator from L2(D)

to Gh, we have ∥f̃ − gh∥2L2(D) → 0 as h → 0. Thus, from the previous result above, as
h, φ→ 0, we have

∥f̃ − f̃h∥2L2(D) → 0.

Therefore, with all arguments mentioned above, we have the following result:

∥(T − T hφ)(r̃, τ̃)∥X = ∥ũ− ũhφ∥H1
0(D) + ∥ξ̃ − ξ̃hφ∥H1

0(D) + ∥f̃ − f̃h∥L2(D) → 0

as h→ 0 and φ→ 0.

Proposition 4.5. ∥T − T hφ∥L(Z,X ) → 0 as h, φ→ 0.

PROOF: We note that H1(D) is compactly embedded in L2(D) if D ⊂ Rd is a bounded
domain with C1 boundary by Morrey’s inequality and Arzela-Ascoli Compactness theorem
with d = 1, by Rellich’s theorem with d = 2, and by Rellich-Kondrachov Compactness
theorem with d = 3. Thus, by compact embedding results, Z ⊂ Y is compact. Thus, the
proof of this proposition follows from the result in Proposition 4.4.

Proposition 4.6. A solution of (4.15) is regular.

PROOF: A proof follows from the linearity and well-posedness of (4.12), (4.13), and (4.14).

Through Propositions 4.2 - 4.6 we have verified all of the assumptions in Section 4.2. Thus,
we obtain the following exponential convergence with respect to the polynomial degree p =
1/φ, which is our main result.

Theorem 4.7. Assume that U ∈ H1
0(D). Let (u, f, ξ) ∈ H1

0(D) × L2(D) × H1
0(D) be the

solution of the optimality system (4.5), (uhφ, fh, ξhφ) ∈ W × Gh ×W be the solution of the
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discrete optimality system (4.19), and ϵ ∈ (0, 1). Then we have

∥u− uhφ∥H1
0(D) + ∥ξ − ξhφ∥H1

0(D) + ∥f − fh∥L2(D) → 0 as h, φ→ 0.

Moreover, there exists C > 0 such that

∥u− uhφ∥H1
0(D) + ∥ξ − ξhφ∥H1

0(D) + ∥f − fh∥L2(D) ≤ (4.23)

C

(
h[∥f∥L2(D) + ∥u− U∥H1

0(D)] +
1

ϵ

N∑
i=1

√
π|Γ|

[
1 +

O(φ
1/3
i )

(1− r2i )
1/2

]
(ri)

1+1/φi

)
,

where 0 < ri ≡ (
√
σ2i − 1 + |σi|)−1 < 1 and σi <

2c(ϵ− 1)

|Γi|
√
λi∥ϕi∥L∞(D)

with a constant c > 0

and eigenpairs (λi, ϕi) in (3.3).

5. NUMERICAL COMPUTATION OF OPTIMAL CONTROL PROBLEMS

In this section, we verify our theoretical results using some numerical examples; i.e., we
report on some numerical experiments to show the exponential convergence results with re-
spect to the polynomial degree p = (p1, p2, · · · , pN ), where pn is the maximum degree of
polynomials in a yn-direction.

5.1. Numerical Setting. In our numerical experiments, we use that our deterministic domain
D is [−1, 1] and each stochastic domain Γn is [−

√
3,
√
3]. Also we suppose that we have a

constant density function. Then from the assumptions aboutXn in the KL expansion, we obtain
the joint probability density function ρ of (X1, X2, · · · , XN ) in our numerical experiments is
(2
√
3)−N .

Here we use a smooth covariance function C(x1, x2) = e−|x1−x2|/α, where α > 0 is the
correlation length. Then ∫

D
C(x1, x2)ϕn(x1) dx1 = λnϕn(x2).

gives the following eigenfunctions {ϕn} and eigenvalues {λn}:

ϕn(x) = cos(vnx)
(√

1 + (2vn)−1 sin(2vn)
)−1/2

if n is odd,

ϕn(x) = sin(wnx)
(√

1− (2wn)−1 sin(2wn)
)−1/2

if n is even,

λn = 2α(1 + α2v2n)
−1 if n is odd, and

λn = 2α(1 + α2w2
n)

−1 if n is even,
where vn is a solution of 1−αv tan(v) = 0 andwn is a solution of αw+tan(w) = 0. Note that
with the correlation length α = 1, our eigenvalues {λn} decay quickly enough as n increases
as we can see in Figure 5.1. Also, as we may guess from {λn} above and from the literature
(e.g., see [39, 44]), we see that the eigenvalue decay rate gets smaller when the correlation
length gets smaller; for example, when α = 0.01, the eigenvalue decay is hardly visible. Thus,
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FIGURE 5.1. Eigenvalue Decay with e−|x1−x2|

in this paper, we use C(x1, x2) = e−|x1−x2|, which gives a reasonable eigenvalue decay rate
so that we can use the first few terms of our KL expansion in numerical computation.

To confirm our theoretical results, we consider a model problem with the target solution
U = sin(πx) + sin(2πx): Find the solution of

−(a(x, y)u′(x, y))′ = f(x) ∀(x, y) ∈ (−1, 1)×
N∏
n=1

(−
√
3,
√
3), (5.1)

u(x, y) = 0 ∀(x, y) ∈ {−1, 1} ×
N∏
n=1

(−
√
3,
√
3),

where a(x, y) = E[a(x, y)] +
∑N

n=1

√
λnϕn(x)yn by controlling f(x) to minimize

J (u, f) =
1

2

∫ √
3

−
√
3

1

(2
√
3)N

∫ 1

−1
|u− U |2 dxdy + β

2

∫ 1

−1
|f |2 dx. (5.2)

5.2. Numerical Results. In this section, we provide the graphs of discrete optimal solutions
together with the target solution; we give the tables of the values of relative errors for the
optimal solutions with various polynomial degrees and their corresponding numbers of degrees
of freedom of the discretization with respect to one-, two-, and three-dimensional stochastic
domains; we finally present the figures of exponential convergence results with respect to p =
(p1, p2, · · · , pN ) in three different dimensional spaces.

In tables and figures for computational results, for simplicity, we use DP =
∑N

n=1 pn,
where pn is the maximum degree of polynomials in a yn-direction and DOF as the number
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DP (DOF ) Relative Error for u Relative Error for ξ Relative Error for f
1(2) 1.198032987982e-01 1.787953125199e-01 1.720684070324e-01
3(4) 9.562740236029e-03 1.524223854302e-02 1.341233756062e-02
5(6) 5.570898785792e-04 1.057333186124e-03 8.615989678717e-04
7(8) 2.795461789913e-05 6.309221819675e-05 4.901139558725e-05
9(10) 1.286833647831e-06 3.391536066446e-06 2.567358708683e-06

11(12) 4.560494644988e-08 1.362462543327e-07 1.019093421438e-07

TABLE 5.1. Dimension = 1, E[a(x, y)] = 2

DP (DOF ) Relative Error for u Relative Error for ξ Relative Error for f
1(2) 9.401289567930e-02 1.987307188342e-01 1.752373609462e-01
3(6) 1.021973093216e-02 2.469886703133e-02 1.951724713049e-02
5(12) 1.005212637175e-03 3.036986195881e-03 2.380145213483e-03
7(20) 9.899411004937e-05 3.609536395869e-04 2.891208795498e-04
9(30) 9.451679011477e-06 3.927211535465e-05 3.149626856263e-05

11(42) 3.335005157516e-07 2.710535612892e-06 2.420352397715e-06

TABLE 5.2. Dimension = 2, E[a(x, y)] = 3

DP (DOF ) Relative Error for u Relative Error for ξ Relative Error for f
1(2) 1.213041981628e-01 2.365082151581e-01 2.067441516861e-01
3(8) 3.705922498228e-02 6.324595325181e-02 5.759006750746e-02
5(18) 7.664352606772e-03 2.486450915935e-02 2.261773242123e-02
7(36) 1.714928430140e-03 8.617173569856e-03 9.261673667937e-03
9(64) 7.369214036585e-04 2.992784382786e-03 3.180578082762e-03

11(100) 1.650674990773e-05 1.329491864220e-04 1.672158841553e-04

TABLE 5.3. Dimension = 3, E[a(x, y)] = 3

of degrees of freedom of the discretization with respect to the random parameter space. For
instance, if we use p = (p1, p2) = (5, 4), then DP = 9 and DOF = 30.

We in our numerical examples focus on the convergence of the discrete optimal solutions,
uhφ, ξhφ, and fh, with respect to the polynomial degree p in terms of the relative error norms.
For example, for the state solution u and the Lagrange multiplier ξ, we use the H1

0 norm,
and for our control f , we use the L2 norm. Also, to satisfy the coercivity condition for our
coefficient a(x, y), we use appropriate values of E[a(x, y)] in each numerical experiment.

First, for the discrete optimal solutions’ graphs, we run our programs by increasing the
polynomial degree p with fixed step size on fixed spatial and stochastic domains as mentioned
above. We then provide solution graphs together with the given target for only two dimensional
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problem (we would like to mention that we have similar results in other dimensional cases as
well). The graphs of the expectations of our optimal solutions E[uhφ],E[ξhφ], and fh with our
target solution U = sin(πx) + sin(2πx) for different values of DP = 2, 4, 6, 8, and 10 are
shown in Figure 5.2.
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FIGURE 5.2. Dimension = 2, E[a(x, y)] = 3, U = sin(πx) + sin(2πx),
DP = 2 (Top left), DP = 4 (Top right), DP = 6 (Middle left), DP = 8
(Middle right), DP = 10 (Bottom)
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In addition, for each dimensional problem, we present figures of E[uhφ] together with U ,
E[ξhφ], and fh when DP is equal to 12 (see Figure 5.3). As we can see from Figures 5.2 and
5.3, in all different cases, we have the values of E[uhφ] closer to the target U as desired.

Second, as we may expect from our theoretical convergence results, when we solve the dis-
crete optimal control problems in one-, two-, and three-dimensional random parameter spaces,
the relative errors for the optimal solutions get much smaller as the polynomial degree increases
(see Tables 5.1, 5.2, and 5.3). Here we get errors a little bit more as we increase the dimension
of the random parameter space, but these are reasonable results because the upper bound of
each error include more and more terms as the dimension gets bigger and because the results
may depend on the coercivity condition of E[a(x, y)].
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FIGURE 5.3. U = sin(πx) + sin(2πx), DP = 12, Dimension = 1 (Top
left), Dimension = 2 (Top right), Dimension = 3 (Bottom)

Finally, as shown in Figure 5.4, based on the values in tables, we obtain exponential rates
of convergence for the discrete optimal solutions with respect to the polynomial degree; these
numerical results confirm our theoretical convergence rates of the optimal solutions.
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FIGURE 5.4. Convergence of Optimal Solutions

6. CONCLUSION REMARKS

Uncertainty can be found everywhere and we cannot just avoid it. In fact, many physical,
biological, chemical, social, economic, and financial systems always involve some types of
uncertainties. For example, we may consider media properties in oil reservoirs, which are very
costly to obtain by measurement. Also, we may think of rainfall amounts that are unpredictable.
From these examples, we see that data available are not always complete in modeling some
phenomena. As a result, mathematical model equations describing theses phenomena should
take uncertainty into account.



THE h × p FEM FOR OPTIMAL CONTROL PROBLEMS 405

In our model problem (constraint equation or stochastic elliptic PDE), we introduced an
element of randomness into incomplete input data to describe some degree of uncertainty of
measurement. Then we analyzed the stochastic PDE constrained optimal control problem by
reformulating in terms of a high dimensional parametric, deterministic problem. Although we
used a stochastic Galerkin finite element method to solve the problem numerically, one could
use a stochastic collocation method and/or a proper sparse grid discretization in a high dimen-
sional space to get better computational results. In addition we could model the Navier-Stokes
equation involving uncertainty and use our idea to analyze the equation describing the motion
of fluids more accurately and giving better predictions. These problems will be addressed in
our future papers.
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