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MOUNTAIN PASS GEOMETRY APPLIED TO THE

NONLINEAR MIXED TYPE ELLIPTIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of at least one nontrivial solution
of the homogeneous mixed type nonlinear elliptic problem. Here
mixed type nonlinearity means that the nonlinear part contain the
jumping nonlinearity and the critical growth nonlinearity. We first
investigate the sub-level sets of the corresponding functional in the
Soboles space and the linking inequalities of the functional on the
sub-level sets. We next investigate that the functional I satisfies the
mountain pass geometry in the critical point theory. We obtain the
result by the mountain pass method, the critical point theory and
variational method.

1. Introduction

In this paper we investigate the multiple solutions of the following
elliptic problem with jumping and critical growth nonlinearity

(1.1) ∆u + bu+ + p|u|p−1 = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded subset of Rn with smooth boundary, 2 < p < 2∗,
2∗ = 2n

n−2
, n ≥ 3, u+ = max{u, 0}, u− = −min{u, 0}, u(x) ∈ W 1,2

0 (Ω).
This mixed type nonlinear problem contains the jumping nonlinearity

and the critical growth nonlinearity. The authors [1], [2], [4], [5], [9],
[10], [11] consider the jumping nonlinear problem. They investigate the
multiplicity results when the constant b of the nonlinear term is less
than λ1 or lies in the between λk and λk+1, k ≥ 1. They obtain the
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multiplicity results by use of the Leray-Schauder degree theory, geometry
of the mapping defined on the finite dimensional reduction subspace,
mountain pass geometry in the critical point theory, the category theory
in critical point theory. In [3], [6], [7], [8], [11] the authors also considered
the critical growth nonlinear problem. They consider the multiplicity
results by use of the variational method, the critical point theory and the
category theory in the critical point theory. In this paper the authors
consider the mixed type case and investigate the multiplicity results
when the jumping nonlinearity and the critical growth nonlinearity act
on the equation.

The eigenvalue problem

(1.2) −∆u = λu, in Ω,

u = 0 on ∂Ω

has infinitely many eigenvalues λk, k ≥ 1 with λ1 < λ2 ≤ . . . ≤ λk ≤ . . .
and infinitely many eigenfunction φk belonging to the eigenvalue λk,
k ≥ 1. Let H be a Sobolev space W 1,2

0 (Ω) with the norm

‖u‖2 =

∫

Ω

|∇u(x)|2dx.

In this paper we are looking for the weak solutions of (1.1) in H, that
is, u ∈ H such that

∫

Ω

(∆u + bu+)vdx + p

∫

Ω

|u|p−1vdx = 0 for all v ∈ H.

Our main result is the following:

Theorem 1.1. Assume that λ1 < b < λ2 and 2 < p < 2∗, 2∗ = 2n
n−2

,
n ≥ 3. Then (1.1) has at least one nontrivial solution.

In section 2 we obtain some results for the Sobolev norm and the op-
erator −∆. We also obtain the result that the corresponding functional
I(u) belongs to C1. In section 3 we investigate the sub-level sets of the
functional and the linking inequalities of the functional on the sub-level
sets. We also investigate that the functional I(u) satisfies the mountain
pass geometry. We prove the main result by the mountain pass method
in the critical point theory.
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2. Some results on the operator −∆ and the functional I

Lemma 2.1. Let u ∈ H = W 1,2
0 (Ω, R) and ‖ · ‖ be a Sobolev norm.

Then
(i) ‖u‖ ≥ C‖u‖L2(Ω) for some constant C > 0.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Ω) = 0.
(iii) −∆u ∈ H implies u ∈ H.
(iv) Let c be not an eigenvalue of −∆ and f ∈ H. Then all the solutions
of

(−∆− c)u = f

belong to H.

Proof. (i) and (ii) can be checked easily by the definition of ‖ · ‖.
(iii) Let −∆u = f ∈ W 1,2

0 (Ω, R). Then f is of the form f =
∑

hmφm.
Then

(−∆)−1f =
∑ 1

λm

hmφm.

We note that for any c, {λm : λm < |c|} is finite. Thus we have

‖(−∆)−1f‖2 =
∑

λ2
m

1

λ2
m

h2
m ≤

∑
h2

m,

which means that
‖(−∆)−1f‖ ≤ ‖f‖L2(Ω).

(iv) (iv) comes from (iii).

Lemma 2.2. Assume that λ1 < b and b is not an eigenvalue of −∆
with Dirichlet boundary condition. Then

(2.1) ∆u + bu+ = 0 in H

has only the trivial solution u = 0.

Proof. We note that u = 0 is a solution of (2.1). We rewrite (2.1) as

(−∆− λ1)u = (b− λ1)u
+ + λ1u

− in H.

We note that ((−∆− λ1)u, φ1) = 0. Thus we have

(2.2)

∫

Ω

[(b− λ1)u
+ + λ1u

−]φ1dx = 0.

Since λ1 < b, (b−λ1)u
+ +λ1u

− is greater than or equal to 0 and strictly
greater than zero if u is strictly greater than zero. The only possibility to
hold (2.2) is that u = 0. That is, u = 0 is the only solution of (2.1).
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By the following Proposition 2.1, the weak solutions of (1.1) coincide
with the critical points of the corresponding functional

I ∈ C1(H, R),

(2.3) I(u) =

∫

Ω

[
1

2
|∇u|2 − b

2
|u+|2 − |u|p]dx.

Proposition 1. Assume that λ1 < b, b is not an eigenvalue. Then
the functional I(u) is continuous, Fréchet differentiable in H with Fréchet
derivative

∇I(u)v =

∫

Ω

[(−∆u) · v − bu+ · v − p|u|p−1 · v]dx.

Moreover ∇I ∈ C. That is, I ∈ C1.

Proof. First we will prove that I(u) is continuous at u. For u, v ∈ H,

|I(u + v)− I(u)| = |1
2

∫

Ω

(−∆u−∆v) · (u + v)dx

−
∫

Ω

[
b

2
|(u + v)+|2 + |u + v|p]dx

−1

2

∫

Ω

(−∆u) · udx +

∫

Ω

[
b

2
|u+|2 + |u|p]dx|

= |1
2

∫

Ω

(−∆u · v −∆v · u−∆v · v)dx

−
∫

Ω

(
b

2
|(u + v)+|2 + |u + v|p

− b

2
|u+|2 − |u|p)dx|.

Let u =
∑

hnφn, v =
∑

knφn. Then we have

|
∫

Ω

(−∆u) · vdx| = |
∑

λnhnkn| ≤ ‖u‖ · ‖v‖,

|
∫

Ω

(−∆v) · udx| = |
∑

λnknhn| ≤ ‖u‖ · ‖v‖,

|
∫

Ω

(−∆v) · vdx| = |
∑

λnknkn| ≤ ‖v‖2,
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from which we have

(2.4) |1
2

∫

Ω

(−∆u · v −∆v · u−∆v · v)dx| ≤ ‖u‖ · ‖v‖+ ‖v‖2.

On the other hand

||(u + v)+|2 − |u+|2| ≤ 2u+|v|+ |v|2,
||u + v|p − |u|p| ≤ C1|u|p−1||v|+ R2(|u|, |v|),

where R2(|u|, |v|) is the remainder part of the Taylor’s expansion series.
Hence we have

(2.5)
|
∫

Ω

(|(u + v)+|2 − |u+|2)dx| ≤ 2‖u+‖L2(Ω)‖v‖L2(Ω) + ‖v‖2
L2(Ω)

≤ 2‖u‖ · ‖v‖+ ‖v‖2,

(2.6)

|
∫

Ω

(|u + v|p − |u|p)dx| ≤ C1‖u‖p−1
L2(Ω)‖v‖L2(Ω) + R2(‖u‖L2(Ω), ‖v‖L2(Ω))

≤ C2‖u‖p−1‖v‖+ R2(‖u‖, ‖v‖).
Combining (2.4) with (2.5) and (2.6), we have

|I(u + v)− I(u)| = o(‖v‖2)

from which we can conclude that I(u) is continuous at u. Next we shall
prove that I(u) is Fréchet differentiable in H. For u, v ∈ H,

|I(u + v)− I(u)−∇I(u)v|
= |1

2

∫

Ω

(−∆u−∆v) · (u + v)dx−
∫

Ω

[
b

2
|(u + v)+|2 + |u + v|p]dx

−1

2

∫

Ω

(−∆u) · udx +

∫

Ω

[
b

2
|u+|2 + |u|p]dx

−
∫

Ω

(−∆u− bu+ − p|u|p−1) · vdx|

= |
∫

Ω

[
1

2
(−∆v) · v − b

2
|(u + v)+|2 − |u + v|p

+
b

2
|u+|2 + |u|p + bu+v + p|u|p−1v]dx|.

Combining (2.4) with (2.5) and (2.6), we have that

(2.7) |I(u + v)− I(u)−∇I(u)v| = O(‖v‖2).
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Thus I(u) is Fréchet differentiable in H. Similarly, it is easily checked
that I ∈ C1.

3. Proof of Theorem 1.1

Now we shall show that the functional I satisfies the mountain pass
geometry. Let us set

X = span{φ1}, Y = X⊥.

Then X is one dimensional subspace and

H = X ⊕ Y.

We have the following linking inequalities:

Lemma 3.1. Assume that λ1 < b < λ2. Then
there exist ρ > 0 and a small ball Bρ with radius ρ such that Bρ∩Y 6= ∅,

inf
u∈∂Bρ∩Y

I(u) > 0 and inf
u∈Bρ∩Y

I(u) > −∞.

Proof. Let u ∈ Y . Then we have

I(u) =

∫

Ω

[
1

2
|∇u|2 − b

2
|u+|2 − |u|p]dx

≥
∫

Ω

[
1

2
|∇u|2 − b

2
|u|2 − |u|p]dx

≥ 1− b
λ2

2
‖u‖2 −

∫

Ω

|u|pdx.

Let us define

Cp(Ω) = inf
u∈H\{0}

∫
Ω
|∇u|2dx

(
∫
Ω
|u|pdx)

2
p

.

Then we have

I(u) ≥ 1− b
λ2

2
‖u‖2 − (Cp(Ω))−

p
2‖u‖p.

Since λ2−b > 0 and p > 2, there exist a small number ρ > 0 and a small
ball Bρ with radius ρ such that infu∈∂Bρ∩Y I(u) > 0 and infu∈Bρ∩Y I(u) >

−(Cp(Ω))−
p
2‖u‖p > −∞.
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Lemma 3.2. Assume that λ1 < b < λ2. Then we can choose e ∈
∂B1 ∩ Y , R > 0 and Q ≡ (B̄R ∩X)⊕ {σe| 0 < σ < R} such that

sup
u∈∂Q

I(u) < 0 and sup
u∈Q

I(u) < ∞.

Proof. Let u ∈ X ⊕ {σe| σ > 0}, u = v + σe, v ∈ X, e ∈ B1 ∩ Y . We
note that

if u ∈ X, then

∫

Ω

[|∇u+|2 − b

2
|u+|2]dx ≤ 1− b

λ1

2
‖u+‖2 < 0.

For s > 0 we have

I(su) = s2(

∫

Ω

[
1

2
|∇(v + σe)|2 − b

2
|(v + σe)+|2]dx− sp

∫

Ω

|v + σe|pdx

≤ s2(1− b
λ1

)

2
‖v+‖2 +

s2(1− b
λn

)

2
σ2 − sp

∫

Ω

|v + σe|p]dx

for some λn ≥ λ2. Since p > 2, I(su) = I(s(v + σe)) → −∞ as s →∞.
Thus there exist R > 0, a ball BR and Q ≡ (B̄R∩X)⊕{σe| 0 < σ < R}
such that if u ∈ ∂Q, then sup I(u) < 0. Moreover if u ∈ Q then

sup I(u) <
s2(1− b

λn
)

2
σ2 < ∞. Thus we prove the lemma.

Lemma 3.3. Assume that λ1 < b < λ2. Then I satisfies the (P.S.)c

condition for every real number c ∈ R.

Proof. Let c ∈ R and (un)n be a sequence such that

un ∈ H, ∀n, I(un) → c, ∇I(un) → 0.

We claim that (un)n is bounded. By contradiction we suppose that
‖un‖ → +∞ and set ûn = un

‖un‖ . Then we have

〈∇I(un), ûn〉

=
2I(un)

‖un‖ −
∫
Ω
[bu+

n + p|un|p−1] · undx− 2
∫

Ω
[ b
2
|u+

n |2 + |un|p]dx

‖un‖ −→ 0.

Hence ∫
Ω
[bu+

n + p|un|p−1] · undx− 2
∫

Ω
[ b
2
|u+

n |2 + |un|p]dx

‖un‖ −→ 0.

We note that∫

Ω

[bu+
n + p|un|p−1] · undx− 2

∫

Ω

[
b

2
|u+

n |2 + |un|p]dx = (p− 2)

∫

Ω

|un|pdx,
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so we have

(3.1) (p− 2)

∫
Ω
|un|pdx

‖un‖ = (p− 2)
‖un‖p

Lp(Ω)

‖un‖ −→ 0.

Since p > 2,

(3.2)
‖un‖p

Lp(Ω)

‖un‖ → 0.

From (3.1), ûn ⇀ 0. On the other hand

‖bu+
n + p|un|p−1‖ ≤ C1(‖un‖+ ‖un|p−1‖

L2∗′ (Ω)
)

for suitable constant C1. Thus we have

‖bu+
n + p|un|p−1

‖un‖ ‖ ≤ C1(1 +
‖un|p−1

‖un‖ ‖
L2∗′ (Ω)

).

If p ≥ 2∗
′
(p − 1), then by the Hölder′s inequality, it is easily checked

that ‖ |un|p−1

‖un‖ ‖L2∗′ (Ω)
can be estimated in terms of

‖un‖p
Lp(Ω)

‖un‖ . If p ≤ 2∗
′
(p−

1), then by the standard interpolation inequalities, ‖ |un|p−1

‖un‖ ‖L2∗′ (Ω)
≤

C2(
‖un‖p

Lp(Ω)

‖un‖ )
(p−1)α

p ‖un‖β for some constant C2, where α > 0 is such that
α
p

+ 1−α
2∗ = 1

2∗′ and β = (1 − α)(p − 1) − 1 − (p−1)α
p

. Since p − 1 ≤
2∗ − 1− (2∗ − p)(1− 2∗

′

2∗ ), β < 0. Thus we have

‖bu+
n + p|un|p−1

‖un‖ ‖ ≤ C2(1 + (
‖un‖p

Lp(Ω)

‖un‖ )
(p−1)α

p ‖un‖β).

for a constant C2. By (3.2) and β < 0,

(3.3)
bu+

n + p|un|p−1

‖un‖ converges.

We get

∇I(un)

‖un‖ = −∆ûn − bu+
n + p|un|p−1

‖un‖ −→ 0.

By (3.3), −∆ûn converges. Since (ûn)n is bounded and the inverse oper-
ator of −∆ is a compact mapping, up to subsequence, (ûn)n has a limit.
Since ûn ⇀ 0, we get ûn → 0, which is a contradiction to the fact that
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‖ûn‖ = 1. Thus (un)n is bounded. We can now suppose that un ⇀ u for
some u ∈ H. We claim that un → u strongly. We have that

〈∇I(un), un〉 = (‖un‖2 −
∫

Ω

[bu+
n un + p|un|p−1un]dx) −→ 0.

Since un ⇀ u for some u ∈ H,
∫
Ω
[bu+

n un + p|un|p−1un]dx converges to∫
Ω
[bu+u+p|u|p−1u]dx. So ‖un‖2 converge. Thus (un)n converges to some

u strongly with ∇I(u) = lim∇I(un) = 0. Thus we prove the lemma.

Proof of Theorem 1.1

By Proposition 2.1, the functional I belong to C1(H, R1). By Lemma
3.1 and Lemma 3.2, there exist ρ > 0, a small ball Bρ with radius ρ,
e ∈ ∂B1∩Y and Q ≡ (B̄R∩X)⊕{σe| 0 < σ < R} such that Brho∩Y 6= ∅,

sup
u∈∂Q

I(u) < inf
u∈∂Bρ∩Y

I(u)

and

sup
u∈Q

I(u) < ∞ and −∞ < inf
u∈Bρ∩Y

I(u).

By Lemma 3.3, the functional I(u) satisfies the (P.S.)c condition for any
c ∈ R. Thus by the Mountain Pass Theorem, I possesses a critical value
c ≥ 0 such that

c = inf
γ∈Γ

max
u∈Q

I(γ(u)),

where

Γ = {γ ∈ C(Q̄,H)| γ = id on ∂Q}.
Therefore (1.1) has at least one nontrivial solution.
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