
J. Korean Math. Soc. 47 (2010), No. 6, pp. 1183–1196
DOI 10.4134/JKMS.2010.47.6.1183

ANNULUS CRITERIA FOR OSCILLATION OF SECOND
ORDER DAMPED ELLIPTIC EQUATIONS

Zhiting Xu

Abstract. Some annulus oscillation criteria are established for the sec-
ond order damped elliptic differential equation

NX

i,j=1

Di[aij(x)Djy] +
NX

i=1

bi(x)Diy + C(x, y) = 0

under quite general assumption that they are based on the information
only on a sequence of annuluses of Ω(r0) rather than on the whole exte-
rior domain Ω(r0). Our results are extensions of those due to Kong for
ordinary differential equations. In particular, the results obtained here
can be applied to the extreme case such as

R
Ω(r0) c(x)dx = −∞.

1. Introduction

Consider the second order damped elliptic differential equation

(1.1)
N∑

i,j=1

Di[aij(x)Djy] +
N∑

i=1

bi(x)Diy + C(x, y) = 0

in Ω(r0), where x = (x1, . . . , xN ) ∈ RN , Di = ∂/∂xi for all i, Ω(r0) = {x ∈
RN : |x| ≥ r0} for some r0 > 0, and |x| = [

∑N
i=1 x

2
i ]1/2.

Throughout this paper we shall assume that
(A1) A(x) = (aij(x))N×N is a real symmetric positive definite matrix func-

tion with aij ∈ C1+ν
loc (Ω(r0),R) for all i, j, ν ∈ (0, 1);

(A1) bi ∈ Cν
loc(Ω(r0),R) for all i;

(A1) C ∈ Cν
loc(Ω(r0) × R,R) with C(x,−y) = −C(x, y) for all x ∈ RN

and y ∈ R. Suppose that there exist functions c ∈ Cν
loc(Ω(r0),R) and

f ∈ C(R,R) ∪ C1(R − {0},R) with yf(y) > 0 and f ′(y) ≥ k > 0
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1184 ZHITING XU

whenever y 6= 0 such that

C(x, y) ≥ c(x)f(y) for all x ∈ Ω(r0), y > 0.

As usual, a function y ∈ C1+ν
loc (Ω(r0),R) with the property aijDjy ∈ C1+ν

loc

(Ω(r0),R) is said to be a solution (classical solution) of Eq.(1.1) in Ω(r0) if
y(x) satisfies Eq.(1.1) for all x ∈ Ω(r0). For existence of solutions of Eq.(1.1),
we refer the reader to the monograph [1]. We restrict our attention only to the
nontrivial solution y(x) of Eq.(1.1), i.e., sup{|y(x)| : |x| > r} > 0 for any r ≥ r0.
A nontrivial solution y(x) of Eq.(1.1) is called oscillatory in Ω(r0) if the set
{x ∈ Ω(r0) : y(x) = 0} is unbounded; otherwise it is said to be nonoscillatory
in Ω(r0). Eq.(1.1) is oscillatory if all of its solutions are oscillatory in Ω(r0).

Equation (1.1) is important for applications in physics, biology and glaciol-
ogy, etc., see [1]. In the qualitative theory of nonlinear PDE, one of the im-
portant themes is to determine whether or not solutions of the equation under
consideration are oscillatory. Since the pioneering work of Noussair and Swan-
son [7], there have been extensive investigations on oscillation for second order
undamped elliptic equations. Swanson [9] summarized the oscillation results
for undamped semilinear elliptic equations up to 1979. Recently, oscillation of
elliptic equations with damping has become an important area of research due
to the fact that such equations arises in real lift problems [1]. We refer the
reader to the papers [5, 6, 11-16, 18] and the references cites therein.

In papers [11-16, 18], authors, starting with integration of the Riccati equa-
tion over spheres in RN centered in the origin, covert the N -dimensional prob-
lem into a problem in one variable and then employ the integral averaging
technique developed by Philos [8] to establish oscillation criteria for the follow-
ing equation

(1.2)
N∑

i,j=1

Di[aij(x)Djy] +
N∑

i=1

bi(x)Diy + c(x)f(y) = 0.

But, in this way, the oscillation criteria contained therein not only neglect the
technical problems for high dimension space, but also deal with the oscillation
of Eq.(1.2) only for the case that the mean value of the potential function c(x)
over the sphere centered in the origin is “sufficiently large”.

On the other hand, in those papers [5, 6, 11-15], the conditions in terms of the
coefficient involving integral averages over the whole exterior domain Ω(r0). It
is difficult to apply them to the case when c(x) has “bad” behavior on a big part
of Ω(r0), e.g., when

∫
Ω(r0)

c(x)dx = −∞. As we know, for ordinary differential
equations, oscillation is an interval property, namely, it is more reasonable to
investigate solutions on an infinite set of bounded intervals. The problem is
therefore to find oscillation criteria which use only the information about the
involved functions on these intervals, outside of these intervals the behavior of
the functions is irrelevant. Such type of oscillation criteria are refereed to as
the interval oscillation criteria. Using this thought, in 1999, Kong [3] employed
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the technique developed by Philos [8] and presented several beautiful interval
oscillation criteria. Recently, Kong’s results were extended to a general class
of second order nonlinear differential equations with nonlinear damping and
second order matrix differential systems by Tiryaki and Zafer [10] and Kong
[4], respectively, see also [17]. Therefore, it is natural to ask if it is possible
to extend Kong’s theorem to Eq.(1.1). An affirmative answer to this problem
was given by Xu and Xing [16] and Zhuang and Yao [18], independently, who
obtained Kong-type oscillation criteria for Eq.(1.2). However, the oscillation
theorems require additional assumptions which are imposed the differentiability
on bi(x) for all i.

Inspired by the ideas of Kong [3] and Mař́ık [5], in this paper, we prefer
an advanced approach than that one used in papers [6, 7, 11–16, 18], that
is not based on conversion of Eq.(1.1) into an ordinary differential inequality.
Following this technique, we extend Kong’s results [3] to Eq.(1.1) and estab-
lish annulus oscillation criteria for Eq.(1.1) by dropping the differentiability on
bi(x). The results obtain here only base on the information on a sequence of
annuluses of Ω(r0), rather then on the whole exterior domain Ω(r0). In particu-
lar, our results can be applied to the extreme case such as

∫
Ω(r0)

c(x)dx = −∞.
Our methodology is somewhat different from that of previous authors. We
believe in some sense that our method is are more natural for studying for
oscillation of PDE.

2. Annulus oscillation

Before proceeding, we set some notation and terminology that will be used
throughout this paper. Let

S(a) = {x ∈ RN : |x| = a},
D = {(r, s) ∈ R2, r ≥ s > r0},
Ω(a, b) = {x ∈ RN : a < |x| < b},
Ω[a, b] = {x ∈ RN : a ≤ |x| ≤ b},
∇ = (D1, D2, . . . , DN ),

B(x) = (b1(x), b2(x), . . . , bN (x)),

A−1(x) denotes the inverse of A(x),

〈 , 〉 is the usual scalar produce in RN ,

dσ represents the integral element of the sphere S(|x|),
ν(x) = x/|x| denotes the outside normal unit vector to the sphere S(|x|),
λmax(x) denotes the largest eigenvalue of the matrix A(x).

Clearly, it follows from (A1) that λmax(x) > 0 for all x ∈ Ω(r0).

Definition 2.1. The function H1 ∈ C(D, [0,∞)) is said to belong to the
function class H1, defined by H1 ∈ H1, if
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(1) H1(r, s) = 0 if and only if r = s;
(2) The partial derivative ∂H1(r, s)/∂r exists. Define

h1(r, s) =
1

H1(r, s)
∂H1(r, s)

∂r
for (r, s) ∈ D, r 6= s,

the function h1 is locally integrable on each compact subset in D.

Definition 2.2. The function H2 ∈ C(D, [0,∞)) is said to the function class
H2, defined by H2 ∈ H2, if

(3) H2(r, s) = 0 if and only if r = s;
(4) The partial derivative ∂H2(r, s)/∂s exists. Denote

h2(r, s) = − 1
H2(r, s)

∂H2(r, s)
∂s

for (r, s) ∈ D, r 6= s,

the function h2 is locally integrable on each compact subset in D.

For convenience, we define the function notations as follows:

Θ1(|x|, a) = h1(|x|, a)ν(x)−B(x)A−1(x) +
∇ρ(x)
ρ(x)

,

Θ2(b, |x|) = h2(b, |x|)ν(x) +B(x)A−1(x)− ∇ρ(x)
ρ(x)

,

λ(r) =
∫

S(r)

ρ(x)λmax(x)dσ, Λ(r) =
∫ r

r0

ds

λ(s)
,

c̆(x) = c(x)− 1
4kε

λmax(x)
∣∣∣B(x)A−1(x)− ∇ρ(x)

ρ(x)

∣∣∣
2

,

where h1, h2 ∈ C(D,R), ρ ∈ C1(Ω(r0),R+) and ε ∈ (0, 1).
To prove our results, we need several preparatory considerations.

Lemma 2.1. Let X,Y ∈ RN . Then the following elementary inequality hold.

〈X,Y 〉 ≤ κ|X|2 +
1
4κ
|Y |2 for any κ > 0.

The proof is straightforward and omitted.

Lemma 2.2. Let A0 ∈ C(Ω(r0),R), A1 ∈ C(Ω(r0),RN ), A2 ∈ C(Ω(r0),R+)
and z ∈ C(Ω(r0),RN ). If there exists (a, b) ⊂ [r0,∞) such that

(2.1) div(z(x)) ≤ −A0(x)− 〈A1(x), z(x)〉 −A2(x)|z(x)|2, x ∈ Ω(a, b),

then for any ` ∈ (a, b) and any Hi ∈ Hi, i = 1, 2,

(2.2)

1
H1(`, a)

∫

Ω[a,` ]

H1(|x|, a)
[
A0(x)− 1

4A2(x)
|Π1(|x|, a)|2

]
dx

+
1

H2(b, `)

∫

Ω[`,b]

H2(b, |x|)
[
A0(x)− 1

4A2(x)
|Π2(b, |x|)|2

]
dx ≤ 0,
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where

Π1(|x|, a) = h1(|x|, a)ν(x)−A1(x), Π2(b, |x|) = h2(b, |x|)ν(x) +A1(x).

Proof. Multiplying both sides of (2.1) by H1(|x|, r) and integrating over the
annulus Ω[r, ` ] for r ∈ (a, `], we get∫

Ω[r,` ]

H1(|x|, r)A0(x)dx

≤ −
∫ `

r

H1(s, r)
∫

S(s)

div(z(x))dσds−
∫

Ω[r,` ]

H1(|x|, r)〈A1(x), w(x)〉dx

−
∫

Ω[r,` ]

H1(|x|, r)A2(x)|z(x)|2dx.

Integration by parts in the first integral of the right side of the above, and by
Gauss formula and the definition of the function h1 give that∫

Ω[r,` ]

H1(|x|, r)A0(x)dx(2.3)

≤ −H(`, r)
∫

S(`)

〈z(x), ν(x)〉dσ +
∫

Ω[r,` ]

H1(|x|, r)〈z(x),Π1(|x|, r)〉dx

−
∫

Ω[r,` ]

H1(|x|, r)A2(x)|z(x)|2dx.

By Lemma 2.1,

〈z(x),Π1(|x|, r)〉 ≤ A2(x)|z(x)|2 +
1

4A2(x)
|Π1(|x|, r)|2.

Combining the above and (2.3), then letting r → a+ and dividing the resulting
inequality through by H1(`, a), one has

(2.4)

1
H1(`, a)

∫

Ω[a,` ]

H1(|x|, a)
[
A0(x)− 1

4A2(x)
|Π1(|x|, a)|2

]
dx

≤ −
∫

S(`)

〈z(x), ν(x)〉dσ.

Similarly, if the both sides of (2.1) is multiplied byH2(r, |x|) and then integrated
over Ω[`, r] for r ∈ [`, b), then proceeding as the proof of (2.4), we can obtain
(2.5)

1
H1(b, `)

∫

Ω[`,b]

H2(b, |x|)
[
A0(x)− 1

4A2(x)
|Π2(b, |x|)|2

]
dx ≤

∫

S(`)

〈z(x), ν(x)〉dσ.

Adding (2.4) and (2.5), we have (2.2). ¤

Lemma 2.3 ([12]). Let y = y(x) be a nonoscillatory solution of Eq.(1.1) and
ρ ∈ C1(Ω(r0), R+). Then N -dimensional vector function w(x) defined by

(2.6) w(x) =
1

f(y)
(A∇y)(x)
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satisfies the partial Riccati inequality

(2.7)
div(ρ(x)w(x)) ≤ − ρ(x)c(x)− 〈ρ(x)B(x)A−1(x)−∇ρ(x), w(x)〉

− kρ(x)λ−1
max(x)|w(x)|2.

Lemma 2.4. Suppose that for any interval (a, b) ⊂ [r0,∞), there exist some
` ∈ (a, b) and functions Hi ∈ Hi, i = 1, 2, ρ ∈ C1(Ω(r0),R+) such that

(2.8)

1
H1(`, a)

∫

Ω[a,` ]

H1(|x|, a)ρ(x)
[
c(x)− 1

4k
λmax(x)|Θ1(|x|, a)|2

]
dx

+
1

H2(b, `)

∫

Ω[`,b]

H2(b, |x|)ρ(x)
[
c(x)− 1

4k
λmax(x)|Θ2(b, |x|)|2

]
dx > 0.

Then every solution of Eq.(1.1) has at least one zero in the annulus Ω(a, b).

Proof. Otherwise, y(x) 6= 0 for all x ∈ Ω(a, b). Defined w(x) by (2.6), by
Lemma 2.3, (2.7) holds. Comparing inequalities (2.1) and (2.7) we identify
that

z(x) = ρ(x)w(x), A0(x) = ρ(x)c(x),

A1(x) = BA−1 − ∇ρ(x)
ρ(x)

, A2(x) =
k

ρ(x)λmax(x)
.

Applying Lemma 2.2 to (2.7) we see that the inequality (2.8) fails to hold. ¤
If the conditions of Lemma 2.4 holds for a sequence {Ω(ai, bi)} of the an-

nuluses such that limi→∞ ai = ∞, then we may conclude that Eq.(1.1) is
oscillatory. Hence, we have the following theorem.

Theorem 2.1. If for each T ≥ r0, there exists an interval (a, b) ⊂ [T,∞) for
which the conditions of Lemma 2.4 are satisfied, then Eq.(1.1) is oscillatory.

The following theorem is an immediate result from Theorem 2.1.

Theorem 2.2. If there exist functions Hi ∈ Hi, i=1, 2, and ρ ∈ C1(Ω(r0),R+)
such that for each l ≥ r0,

(2.9) lim sup
r→∞

∫
Ω[l,r]

H1(|x|, l)ρ(x)c(x)dx∫
Ω[l,r]

H1(|x|, l)ρ(x)λmax(x)|Θ1(|x|, l)|2dx = ∞

and

(2.10) lim sup
r→∞

∫
Ω[l,r]

H2(r, |x|)ρ(x)c(x)dx∫
Ω[l,r]

H2(r, |x|)ρ(x)λmax(x)|Θ2(r, |x|)|2dx = ∞,

then Eq.(1.1) is oscillatory.

Proof. For any T ≥ r0, let a = T . In (2.9) we choose l = a. Then there exists
` > a such that
(2.11)∫

Ω[a,` ]

H1(|x|, a)ρ(x)c(x)dx > 1
4k

∫

Ω[a,` ]

H1(|x|, a)ρ(x)λmax(x)|Θ1(|x|, a)|2dx.
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In (2.10) we choose l = `. Then there exists b > ` such that
(2.12)∫

Ω[`,b]

H2(b, |x|)ρ(x)c(x)dx > 1
4k

∫

Ω[`,b]

H2(b, |x|)ρ(x)λmax(x)|Θ2(b, |x|)|2dx.

Combining (2.11) and (2.12) we obtain (2.8) holds. The conclusion thus comes
from Theorem 2.1. ¤

The following results is also a consequence of Theorem 2.1 whose proof is
similar to that of Theorem 2.2.

Theorem 2.3. If there exist functions Hi ∈ Hi, i=1, 2, and ρ ∈ C1(Ω(r0),R+)
such that for each l ≥ r0,

(2.13) lim sup
r→∞

∫

Ω[l,r]

H1(|x|, l)ρ(x)
[
c(x)− 1

4k
λmax(x)|Θ1(|x|, l)|2

]
dx > 0

and

(2.14) lim sup
r→∞

∫

Ω[l,r]

H2(r, |x|)ρ(x)
[
c(x)− 1

4k
λmax(x)|Θ2(r, |x|)|2

]
dx > 0,

then Eq.(1.1) is oscillatory.

Remark 2.1. If N = 1, bi(x) = 0 for all i and ρ(x) = 1, then Theorems 2.1 and
2.3 reduce Theorem 2.1 and Corollary 2.4, respectively, given in [3]. On the
other hand, if N = 1, then Theorem 2.1 reduces Theorem 1 in [17].

Remark 2.2. For Eq.(1.2), Theorems 2.1 and 2.3 improve Theorems 2.1 and
2.2 in [16], and Theorems 2.2 and 2.3 in [18].

Next, we define

(2.15) H1(r, s) = [Λ(r)− Λ(s)]α, H2(r, s) = [Λ(r)− Λ(s)]β , r ≥ s ≥ r0,

where α, β > 1 are constants.
By Theorems 2.2 and 2.3, we have the following oscillation criteria.

Corollary 2.1. If there exist a function ρ ∈ C1(Ω(r0),R) with

∇ρ(x) = ρ(x)B(x)A−1(x)

and some α, β > 1 such that for each l ≥ r0,

(2.16) lim sup
r→∞

1
[Λ(r)− Λ(l)]α−1

∫

Ω[l,r]

[Λ(|x|)− Λ(l)]αρ(x)c(x)dx = ∞

and

(2.17) lim sup
r→∞

1
[Λ(r)− Λ(l)]β−1

∫

Ω[l,r]

[Λ(r)− Λ(|x|)]βρ(x)c(x)dx = ∞,

then Eq.(1.1) is oscillatory.



1190 ZHITING XU

Proof. Taking H1(r, s) and H2(r, s) as in (2.15), we get

Θ1(|x|, l) =
α

Λ(|x|)− Λ(l)
1

λ(|x|)ν(x), Θ2(r, |x|) =
β

Λ(r)− Λ(|x|)
1

λ(|x|)ν(x).

Note that

(2.18)

∫

Ω[l,r]

H1(|x|, l)ρ(x)λmax(x)|Θ1(|x|, l)|2dx

=
∫ r

l

H1(s, l)|Θ1(s, l)|2
∫

S(s)

ρ(x)λmax(x)dσds

=
α2

α− 1
[Λ(r)− Λ(l)]α−1

and

(2.19)

∫

Ω[l,r]

H2(r, |x|)ρ(x)λmax(x)|Θ2(r, |x|)|2dx

=
∫ r

l

H2(r, s)|Θ2(r, s)|2
∫

S(s)

ρ(x)λmax(x)dσds

=
β2

β − 1
[Λ(r)− Λ(l)]β−1.

Combining (2.16) and (2.18), we obtain (2.9). Similarly, (2.17) and (2.19)
implies that (2.10) holds. By Theorem 2.2, Eq.(1.1) is oscillatory. ¤

Corollary 2.2. If there exist a function ρ ∈ C1(Ω(r0),R) with

∇ρ(x) = ρ(x)B(x)A−1(x)

satisfying limr→∞ Λ(r) = ∞ and some α, β > 1 such that for each l ≥ r0,

(2.20) lim sup
r→∞

1
Λα−1(r)

∫

Ω[l,r]

[Λ(|x|)− Λ(l)]αρ(x)c(x)dx >
α2

4k(α− 1)

and

(2.21) lim sup
r→∞

1
Λβ−1(r)

∫

Ω[l,r]

[Λ(r)− Λ(|x|)]βρ(x)c(x)dx > β2

4k(β − 1)
,

then Eq.(1.1) is oscillatory.

Proof. Similar to the proof of Corollary 2.1, we get (2.18) and (2.19) hold. The
fact that limr→∞ Λ(r) = ∞ follows that

lim sup
r→∞

1
Λα−1(r)

∫

Ω[l,r]

H1(|x|, l)ρ(x)λmax(x)|Θ1(|x|, l)|2dx =
α2

α− 1
(2.22)

and

lim sup
r→∞

1
Λα−1(r)

∫

Ω[l,r]

H2(r, |x|)ρ(x)λmax(x)|Θ2(r, |x|)|2dx =
β2

β − 1
.(2.23)
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Therefore, (2.20) and (2.22) implies that (2.13) holds. (2.21) and (2.23) follows
that (2.14) holds. By Theorem 2.3, Eq.(1.1) is oscillatory. ¤

Corollary 2.3. If there exist a function ρ ∈ C1(Ω(r0),R) with

∇ρ(x) = ρ(x)B(x)A−1(x)

satisfying limr→∞ Λ(r) = ∞ and some u > 1/(4k) such that

(2.24)
∫

S(r)

ρ(x)c(x)dσ ≥ u

Λ2(r)
1

λ(r)
,

then Eq.(1.1) is oscillatory.

Proof. Note that

lim sup
r→∞

1
Λα−1(r)

∫

Ω[l,r]

[Λ(|x|)− Λ(l)]αρ(x)c(x)dx

= lim sup
r→∞

1
Λα−1(r)

∫ r

l

[Λ(s)− Λ(l)]α
∫

S(s)

ρ(x)c(x)dσds (by (2.24))

≥ lim sup
r→∞

1
Λα−1(r)

∫ r

l

[Λ(s)− Λ(l)]α
u

Λ2(s)λ(s)
ds (by L’Hopital’s rule)

=
u

α− 1
lim sup

[Λ(r)− Λ(l)]α

Λα(r)
=

u

α− 1
.

Consequently, for any u > 1/(4k), there exists a constant α > 1 such that

u

α− 1
>

α2

4k(α− 1)
.

This means that (2.20) holds.
On the other hand, it follows from the fundamental inequality [2, Theorem

41]
(r − s)β ≥ rβ − βsrβ−1 for r > s ≥ r0,

that
[Λ(r)− Λ(s)]β ≥ Λβ(r)− βΛ(s)Λβ−1(r) for r ≥ s ≥ r0.

Therefore,

lim sup
r→∞

1
Λβ−1(r)

∫

Ω[l,r]

[Λ(r)− Λ(s)]βρ(x)c(x)dx

= lim sup
r→∞

1
Λβ−1(r)

∫ r

l

[Λ(r)− Λ(s)]β
∫

S(s)

ρ(x)c(x)dσdx

≥ lim sup
r→∞

1
Rβ−1(r)

∫ r

l

[Λβ(r)− βΛ(s)Λβ−1(r)]
u

Λ2(s)
1

λ(s)
ds

= u lim sup
r→∞

(Λ(r)
Λ(l)

− β ln
Λ(r)
Λ(l)

− 1
)

= ∞.
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Hence, for any u > 0 and β > 1, we have

lim sup
r→∞

1
Λβ−1(r)

∫

Ω[l,r]

[Λ(r)− Λ(|x|)]βρ(x)c(x)dx = ∞ >
β2

4k(β − 1)
,

i.e., (2.21) holds. Applying Corollary 2.2, we find Eq.(1.1) is oscillatory. ¤

The remaining part of this section, using Lemma 2.1 for (2.7), we present
another set of oscillation results which different from Theorems 2.1, 2.2, 2.3
and Corollaries 2.1, 2.2, 2.3. For this, we first establish the following lemma
corresponding to Lemma 2.4.

Lemma 2.5. Suppose that for any interval (a, b) ⊂ [r0,∞), there exist some
` ∈ (a, b) and functions Hi ∈ Hi, i = 1, 2, ρ ∈ C1(Ω(r0),R+) such that
(2.25)

1
H1(`, a)

∫

Ω[a,` ]

H1(|x|, a)ρ(x)
[
c̆(x)− 1

4k(1− ε)
λmax(x)|h1(|x|, a)|2

]
dx

+
1

H2(b, `)

∫

Ω[`,b]

H2(b, |x|)ρ(x)
[
c̆(x)− 1

4k(1− ε)
λmax(x)|h2(b, |x|)|2

]
dx > 0,

where ε ∈ (0, 1) is a constant if ρ(x)B(x)A−1(x) 6= ∇ρ(x), and ε = 0 if
ρ(x)B(x)A−1(x) = ∇ρ(x). Then every solution of Eq.(1.1) has at least one
zero in the annulus Ω(a, b).

Proof. Otherwise, y(x) 6= 0 for all x ∈ Ω(a, b). Defined w(x) by (2.6), by
Lemma 2.3, (2.7) holds.

Case 1. If ρ(x)B(x)A−1(x)−∇ρ(x) 6= 0, by Lemma 2.1, then
〈
BA−1 − ∇ρ(x)

ρ(x)
, w(x)

〉

≤ 1
4kε

λmax(x)
∣∣∣B(x)A−1(x)− ∇ρ(x)

ρ(x)

∣∣∣
2

+ kελ−1
max(x)|w(x)|2.

Combining the above and (2.7), one has

(2.26) div(ρ(x)w(x)) ≤ −ρ(x)c̆(x)− k(1− ε)λ−1
max(x)|w(x)|2.

It follows from the last inequality that (2.1) holds with

z(x) = ρ(x)w(x), A0(x) = ρ(x)c̆(x), A1(x) = 0, A2(x) =
k(1− ε)

ρ(x)λmax(x)
.

Applying Lemma 2.2 to (2.26) we see that inequality (2.25) fails to hold.
Case 2. If ρ(x)B(x)A−1(x)−∇ρ(x) = 0, then (2.7) reduces

div(ρ(x)w(x)) ≤ −ρ(x)c(x)− kρ(x)λ−1
max(x)|w(x)|2.

By Lemma 2.2, we also get a desired contradiction to (2.25) for ε = 0. ¤

The following results are the counterparts of Theorems 2.1, 2.2, 2.3 and
Corollaries 2.1, 2.2, 2.3, which can be proved in a similar manner.
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Theorem 2.4. If for each T ≥ r0, there exists an interval (a, b) ⊂ [T,∞) for
which the conditions of Lemma 2.5 are satisfied, then Eq.(1.1) is oscillatory.

Theorem 2.5. If there exist functions Hi ∈ Hi, i=1, 2, and ρ ∈ C1(Ω(r0),R+)
such that for each l ≥ r0,

(2.27) lim sup
r→∞

∫
Ω[l,r]

H1(|x|, l)ρ(x)c̆(x)dx∫
Ω[l,r]

H1(|x|, l)ρ(x)λmax(x)|h1(|x|, l)|2dx = ∞

and

(2.28) lim sup
r→∞

∫
Ω[l,r]

H2(r, |x|)ρ(x)c̆(x)dx∫
Ω[l,r]

H2(r, |x|)ρ(x)λmax(x)|h2(r, |x|)|2dx = ∞,

then Eq.(1.1) is oscillatory.

Theorem 2.6. If there exist functions Hi ∈ Hi, i=1, 2, and ρ ∈ C1(Ω(r0),R+)
such that for each l ≥ r0,

(2.29) lim sup
r→∞

∫

Ω[l,r]

H1(|x|, l)ρ(x)
[
c̆(x)− 1

4k(1− ε)
λmax(x)|h1(|x|, l)|2

]
dx > 0

and
(2.30)

lim sup
r→∞

∫

Ω[l,r]

H2(r, |x|)ρ(x)
[
c̆(x)− 1

4k(1− ε)
λmax(x)|h2(r, |x|)|2

]
dx > 0,

where ε is same as in Lemma 2.5, then Eq.(1.1) is oscillatory.

Corollary 2.4. If there exist a function ρ ∈ C1(Ω(r0),R) and some α, β > 1
such that for each l ≥ r0,

(2.31) lim sup
r→∞

1
[Λ(r)− Λ(l)]α−1

∫

Ω[l,r]

[Λ(|x|)− Λ(l)]αρ(x)c̆(x)dx = ∞

and

(2.32) lim sup
r→∞

1
[Λ(r)− Λ(l)]β−1

∫

Ω[l,r]

[Λ(r)− Λ(|x|)]βρ(x)c̆(x)dx = ∞,

then Eq.(1.1) is oscillatory.

Corollary 2.5. If there exist a function ρ∈C1(Ω(r0),R) satisfying limr→∞ Λ(r)
= ∞, and some α, β > 1 such that for each l ≥ r0,

(2.33) lim sup
r→∞

1
Λα−1(r)

∫

Ω[l,r]

[Λ(|x|)− Λ(l)]αρ(x)c̆(x)dx >
α2

4k(1− ε)(α− 1)

and

(2.34) lim sup
r→∞

1
Λβ−1(r)

∫

Ω[l,r]

[Λ(r)− Λ(|x|)]βρ(x)c̆(x)dx > β2

4k(1− ε)(β − 1)
,

where ε is same as in Lemma 2.5, then Eq.(1.1) is oscillatory.



1194 ZHITING XU

Corollary 2.6. If there exist a function ρ∈C1(Ω(r0),R) satisfying limr→∞ Λ(r)
= ∞, and some u > 1/(4k) such that

(2.35)
∫

S(r)

ρ(x)c̆(x)dσ ≥ u

Λ2(r)
1

λ(r)
,

then Eq.(1.1) is oscillatory.

Remark 2.3. We note that it is suffices to satisfy (2.25) in Theorem 2.4, which
ensures a certain flexibility in applications. Clearly, if (2.25) is satisfied for
some ε0 ∈ (0, 1), it shall also hold for any ε ∈ (0, ε0). This property for ε also
holds for Theorems 2.5, 2.6 and Corollaries 2.4, 2.5, 2.6.

Remark 2.4. f(y) may not be differentiable or increasing, for example, f(x)
satisfies

f(y)
y

≥ κ > 0 for all x 6= 0.

In this case, when c(x) ≥ 0 for all x ∈ Ω(r0) and c(x) does not vanish eventually,
define w(x) by

w(x) =
1
y
(A∇y)(x),

following the slight modification of the proofs of the corresponding theorems
given in this paper, we can obtain new set of oscillation criteria for Eq.(1.1).
Here, we leave the statements and proofs of these results to the interested
reader.

Remark 2.5. Note that the functions Hi (i = 1, 2) play slightly different role
here than those in [3, 4, 10, 16, 17, 18]. The reason is that we wish to give
simple formulas in our results.

Remark 2.6. The oscillation of Eq.(1.2) has been investigated by many authors.
Our results, however, are still new because we drop the differentiability of the
damped functions bi(x) for all i. The arbitrariness of function ρ(x) and the
classes of functions Hi, i = 1, 2, provide more flexibilities for deriving new
oscillation criteria. Though we have chosen Hi, i = 1, 2, defined by (2.15),
there are interesting possibilities to apply our results, for instance, with

H1(r, s) =
( ∫ r

s

du

φ(u)

)α

and H2(r, s) =
( ∫ r

s

du

ψ(u)

)β

, (r, s) ∈ D,

where α, β > 1, φ, ψ ∈ C([r0,∞),R+) satisfy
∫∞

r0
du/φ(u)= ∞ and

∫∞
r0
du/ψ(u)

= ∞.

Finally, we provide two examples to illustrate the main results.

Example 2.1. Consider the following elliptic equation
(2.36)
∂

∂x1

( 1
|x|

∂y

∂x1

)
+

∂

∂x2

( 1
|x|

∂y

∂x2

)
+

1
|x|4

(
x1

∂y

∂x1
+ x2

∂y

∂x2

)
+ c(x)(y + y3) = 0,
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where x ∈ Ω(1), and

c(x) =




|x| − 3n, 3n ≤ |x| ≤ 3n+ 1,
−|x|+ 3n+ 2, 3n+ 1 < |x| ≤ 3n+ 2,
c0(x), 3n+ 2 < |x| ≤ 3n+ 3,

for n ∈ {1, 2, . . .}, where c0 ∈ Cν(Ω(r0),R) which makes c ∈ Cν(Ω(r0),R). It is
worth mentioning that by a suitable choice of c0(x) we can make

∫
Ω(r0)

c(x)dx =
−∞.

Take H1(r, s) = H2(r, s) = (r − s)2 and ρ(x) = |x| in Theorem 2.1. For any
T ≥ 1, let n large enough such that 3n ≥ T . Let a = 3n, ` = 3n + 1 and
b = 3n+ 2, we can easily evaluate integral in (2.8) as

π
(
9n2 − 6n− 44

15
)
>

1
15
π > 0, n > 1.

Thus, in view of Theorem 2.1, we may conclude that Eq.(2.36) is oscillatory.
In fact, if y(x) is a solution of Eq.(2.36), then y(x) has at least one zero in each
annulus Ω(3n, 3n+ 2) for any integer n ≥ 1.

Example 2.2. Consider the 2-dimensional Lapalacin equation

(2.37) 4y + b1(x)
∂y

∂x1
+ b2(x)

∂y

∂x2
+

δ

|x|2 ln2 |x| (y + y3) = 0,

where x ∈ Ω(1), δ > 1 and b1, b2 ∈ Cν(Ω(1),R) may be not differentiable such
that |B(x)|2 ≤ δ/(|x|2 ln2 |x|). For Corollary 2.6, let ρ(x) = 1, ε = 1/2. A
simple computation yields that

λ(r) = 2πr, Λ(r) =
1
2π

ln r, c̆(x) ≥ δ

2|x|2 ln2 |x| .

Note that ∫

S(r)

ρ(x)c̆(x)dσ ≥ πδ

r ln2 r
and

1
Λ2(r)λ(r)

=
2π

r ln2 r
.

For any δ > 1, there exists u > 1/2 such that δ > 2u > 1. This means that
(2.35) holds. By Corollary 2.6, Eq.(2.37) is oscillatory.
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