• 제목/요약/키워드: Dynamic analysis of multibody systems

검색결과 83건 처리시간 0.023초

다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법 (Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment)

  • 장진현;정헌술
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석 (Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components)

  • 황원걸;성원석;안기원
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

기전 시스템의 동역학 해석 (Dynamic analysis of electromechanical system)

  • 김진식;박정훈;임홍재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1113-1118
    • /
    • 2004
  • This paper presents the dynamic analysis method for an electromechanical system. The engineer has at his disposal a variety of software simulation tools. However, difficulties arise when the study of the behavior of complex electromechanical systems in combination with coupling element is required. Typical examples of such systems are machines for factory automation, home automation, and office automation. Dynamic systems analysis packages or electronic systems analysis packages offer the restrictive to simulate these mixed systems such electromechanical product. Electronic circuit analysis algorithm is easily incorporated into a multi-body dynamics analysis algorithm. The governing equation of electronic circuit is formulated as a differential algebraic equation form including both electrical and mechanical variables and is simultaneously solved in every time step. This analysis method clearly demonstrates the application potential for mixed electromechanical simulation.

  • PDF

일정 일반속력으로 구동되는 다물체계의 정상상태의 평형해석 (Steady-state Equilibrium Analysis of a Multibody System Driven by Constant Generalized Speeds)

  • 최동환;박정훈;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.465-470
    • /
    • 2001
  • This paper presents an algorithm which seeks steady-state equilibrium positions of constrained multibody systems driven by constant generalized speeds. Since the relative coordinates are employed, the constraint equations at cut joints are incorporated into the formulation. The proposed algorithm leads to nonlinear equations that need to be solved iteratively. This algorithm should satisfy both types of conditions: the force equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the proposed algorithm, two numerical examples are solved and the results are compared with those of a commercial program. This method, compared to the conventional method of using dynamic analysis, has the advantage of computational efficiency and stability.

  • PDF

직접미분법을 이용한 현가장치의 기구학적 민감도해석 (Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation)

  • 민현기;탁태오;이장무
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구 (Study of of Flexible Multibody Dynamics with Rotary Inertia)

  • 김성수
    • 소음진동
    • /
    • 제6권3호
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

A Hybrid Coordinate Partitioning Method in Mechanical Systems Containing Singular Configurations

  • Yoo, Wan-Suk;Lee, Soon-Young;Kim, Oe-Jo
    • 한국철도학회논문집
    • /
    • 제5권3호
    • /
    • pp.174-180
    • /
    • 2002
  • In multibody dynamics, DAE(Differential Algebraic Equations) that combine differential equations of motion and kinematic constraint equations should be solved. To solve these equations, either coordinate partitioning method or constraint stabilization method is commonly used. The most typical coordinate partitioning methods are LU decomposition, QR decomposition, and SVD(singular value decomposition). The objective of this research is to suggest a hybrid coordinate partitioning method in the dynamic analysis of multibody systems containing singular configurations. Two coordinate partitioning methods, i.e. LU decomposition and QR decomposition for constrained multibody systems, are combined for a new hybrid coordinate partitioning method. The proposed hybrid method reduces the simulation time while keeping accuracy of the solution.

멀티레이트 수치적분법을 이용한 유연다물체 동역학해석 (Flexible Multibody Dynamic Analysis Using Multirate Integration Method)

  • 김성수;김봉수
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2804-2811
    • /
    • 2000
  • A Nordsick form opf the multirate integration scheme has been proposed for flexible multibody dynamic systems. It is assumed that vibrational modal coordinates in the equations of motion are treated as fast variables, whereas the relative joint coordinates are treated as slow variables. In the multirate integration, the fast variables are integrated with small step-size, and the slow variables are integrated with larger step-size. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multrate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of the military tank have been carried out to show the effectiveness and efficiency of the proposed method.

탄성 다물체계에 대한 조인트좌표 공간에서의 역동역학 해석 (Inverse Dynamic Analysis of Flexible Multibody System in the Joint Coordinate Space)

  • 이병훈
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.352-360
    • /
    • 1997
  • An inverse dynamic procedure for spatial multibody systems containing flexible bodies is developed in the relative joint coordinate space. Constraint acceleration equations are derived in terms of relative coordinates using the velocity transformation technique. An inverse velocity transformation operator, which transforms the Cartesian velocities to the relative velocities, is derived systematically corresponding to the types of kinematic joints connecting the bodies and the system reference matrix. Using the resulting matrix, the joint reaction forces and moments are analyzed in the Cartesian coordinate space. The formulation is illustrated by means of two numerical examples.

다물체계의 선형 동역학식을 이용한 대차의 진동 해석 (Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제17권5호
    • /
    • pp.321-327
    • /
    • 2014
  • 본 연구에서는 구속된 다물체계의 비선형 운동방정식으로부터 QR분해법을 이용하여 선형 운동방정식을 유도하는 방법을 제시하였다. 다물체계의 선형 진동 방정식을 철도차량 대차에 적용하여 대차의 고유 진동모드를 구하고 레일의 변위 입력에 대한 대차프레임의 전달 함수를 구하여 대차의 진동 특성을 분석하였다. 대차의 고유 모드는 35Hz이하에서 나타났고 198Hz이상에서 국부모드가 계산되었다. 대차 프레임의 수직변위 전달함수는 수직변위 모드와 피치 모드가 속도에 영향을 받기 때문에 속도에 따라 변화하는 것으로 나타났다. 횡방향 전달함수는 매우 작게 나타났으며 전후방향 전달함수는 속도에 관계없이 전후방향 변위 모드가 주로 가진되는 것으로 나타났다.