• Title/Summary/Keyword: Drain-to-source current

Search Result 198, Processing Time 0.028 seconds

Breakdown Voltage Improvement in SOI MOSFET Using Gate-Recessed Structure (게이트가 파인 구조를 이용한 SOI MOSFET에서의 항복전압 개선)

  • 최진혁;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.159-165
    • /
    • 1995
  • A gate-recessed structure is introduced to SOI MOSFET's in order to increase the source-to-drain breakdown voltage. A significant increase in the breakdown voltage is observed compared with that of a planar single source/drain SOI MOSFET without inducing the appreciable reduction of the current drivability. We have analyzed the origin of the breakdown voltage improvement by the substrate current measurements and 2-D device simulations, and shown that the breakdown voltage improvement is caused by the reductions in the impact ionization rate and the parasitic bipolar current gain.

  • PDF

Modeling of Parasitic Source/Drain Resistance in FinFET Considering 3D Current Flow (3차원적 전류 흐름을 고려한 FinFET의 기생 Source/Drain 저항 모델링)

  • An, TaeYoon;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.67-75
    • /
    • 2013
  • In this paper, an analytical model is presented for the source/drain parasitic resistance of FinFET. The parasitic resistance is a important part of a total resistance in FinFET because of current flow through the narrow fin. The model incorporates the contribution of contact and spreading resistances considering three-dimensional current flow. The contact resistance is modeled taking into account the current flow and parallel connection of dividing parts. The spreading resistance is modeled by difference between wide and narrow and using integral. We show excellent agreement between our model and simulation which is conducted by Raphael, 3D numerical field solver. It is possible to improve the accuracy of compact model such as BSIM-CMG using the proposed model.

LNA Design Uses Active and Passive Biasing Circuit to Achieve Simultaneous Low Input VSWR and Low Noise (낮은 입력 정재파비와 잡음을 갖는 수동 및 능동 바이어스를 사용한 저잡음증폭기에 관한 연구)

  • Jeon, Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1263-1268
    • /
    • 2008
  • In this paper, the low noise power amplifier for GaAs FET ATF-10136 is designed and fabricated with active bias circuit and self bias circuit. To supply most suitable voltage and current, active bias circuit is designed. Active biasing offers the advantage that variations in the pinch-off voltage($V_p$) and saturated drain current($I_{DSS}$) will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets a gate-source voltage($V_{gs}$) for the desired drain voltage and drain current. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA, suitable for input stage matching and gate source bias. The LNA is fabricated on FR-4 substrate with active and self bias circuit, and integrated in aluminum housing. As a results, the characteristics of the active and self bias circuit LNA implemented more than 13 dB and 14 dB in gain, lower than 1 dB and 1.1 dB in noise figure, 1.7 and 1.8 input VSWR at normalized frequency $1.4{\sim}1.6$, respectively.

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

Analysis for Series Resistance of Amorphous Silicon Thin Film Transistor (비정질 실리코 박막 트랜지스터의 직렬 저항에 관한 분석)

  • Kim, Youn-Sang;Lee, Seong-Kyu;Han, Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.951-957
    • /
    • 1994
  • We present a new model for the series resistance of inverted-staggered amorphous silicon (a-Si) thin film transistors (TFT's) by employing the current spreading under the source and the drain contacts as well as the space charge limited current model. The calculated results based on our model have been in good agreements with the measured data over a wide range of applied voltage, gate-to-source and gate-to-drain overlap length, channel length, and operating temperature. Our model shows that the contribution of the series resistances to the current-voltage (I-V) characteristics of the a-Si TFT in the linear regime is more significant at low drain and high gate voltages, for short channel and small overlap length, and at low operating temperature, which have been verified successfully by the experimental measurements.

Screen-printed Source and Drain Electrodes for Inkjet-processed Zinc-tin-oxide Thin-film Transistor

  • Kwack, Young-Jin;Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.271-274
    • /
    • 2011
  • Screen-printed source and drain electrodes were used for a spin-coated and inkjet-processed zinc-tin oxide (ZTO) TFTs for the first time. Source and drain were silver nanoparticles. Channel length was patterned using screen printing technology. Different silver nanoinks and process parameters were tested to find optimal source and drain contacts Relatively good electrical properties of a screen-printed inkjet-processed oxide TFT were obtained as follows; a mobility of 1.20 $cm^2$/Vs, an on-off current ratio of $10^6$, a Vth of 5.4 V and a subthreshold swing of 1.5 V/dec.

Current Modeling for Accumulation Mode GaN Schottky Barrier MOSFET for Integrated UV Sensors

  • Park, Won-June;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • The drain current of the SB MOSFET was analytically modeled by an equation composed of thermionic emission and tunneling with consideration of the image force lowering. The depletion region electron concentration was used to model the channel electron concentration for the tunneling current. The Schottky barrier width is dependent on the channel electron concentration. The drain current is changed by the gate oxide thickness and Schottky barrier height, but it is hardly changed by the doping concentration. For a GaN SB MOSFET with ITO source and drain electrodes, the calculated threshold voltage was 3.5 V which was similar to the measured value of 3.75 V and the calculated drain current was 1.2 times higher than the measured.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Performance Analysis of Tri-gate FinFET for Different Fin Shape and Source/Drain Structures (Tri-gate FinFET의 fin 및 소스/드레인 구조 변화에 따른 소자 성능 분석)

  • Choe, SeongSik;Kwon, Kee-Won;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.71-81
    • /
    • 2014
  • In this paper, the performance variations of tri-gate FinFET are analyzed for different fin shapes and source/drain epitaxy types using a 3D device simulator(Sentaurus). If the fin shape changes from a rectangular shape to a triangular shape, the threshold voltage increases due to a non-uniform potential distribution, the off-current decreases by 72.23%, and the gate capacitance decreases by 16.01%. In order to analyze the device performance change from the structural change of the source/drain epitaxy, we compared the grown on the fin (grown-on-fin) structure and grown after the fin etch (etched-fin) structure. 3-stage ring oscillator was simulated using Sentaurus mixed-mode, and the energy-delay products are derived for the different fin and source/drain shapes. The FinFET device with triangular-shaped fin with etched-fin source/drain type shows the minimum the ring oscillator delay and energy-delay product.

Analog CMOS Performance Degradation due to Edge Direct Tunneling (EDT) Current in sub-l00nm Technology

  • Navakanta Bhat;Thakur, Chandrabhan-Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • We report the results of extensive mixed mode simulations and theoretical analysis to quantify the contribution of the edge direct tunneling (EDT) current on the total gate leakage current of 80nm NMOSFET with SiO2 gate dielectric. It is shown that EDT has a profound impact on basic analog circuit building blocks such as sample-hold (S/H) circuit and the current mirror circuit. A transistor design methodology with zero gate-source/drain overlap is proposed to mitigate the EDT effect. This results in lower voltage droop in S/H application and better current matching in current mirror application. It is demonstrated that decreasing the overlap length also improves the basic analog circuit performance metrics of the transistor. The transistor with zero gate-source/drain overlap, results in better transconductance, input resistance, output resistance, intrinsic gain and unity gain transition frequency.