• Title/Summary/Keyword: Drain engineering

Search Result 987, Processing Time 0.028 seconds

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Self-weight Consolidation (방사방향 자중압밀을 고려한 초연약 지반의 비선형 유한변형 압밀거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.495-508
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials. The installation of vertical drain provides a radial drainage path to water in the deposit soil in addition to the vertical direction. An estimation of time rate of settlement is considerably complicated when vertical drains are installed to enhance consolidation process of dredged material because the vertical drains are commonly installed before self-weight consolidation is ceased. In this paper, the vertical drain theory developed by Barron(1948) is applied to analyze the non-linear consolidation behavior considering radial drainage. The overall average degree of self-weight consolidation of the dredged soil under the condition that the water is drained in both radial and vertical directions is estimated using the Carillo(1942) formula. In addition, the Morris(2002) theory and the one-dimensional non-linear finite strain numerical model, PSDDF, are applied to analyze the self-weight consolidation in case of only the vertical drainage is considered. The new analysis approach proposed herein can simulate properly the time rate of the self-weight consolidation of dredged materials that is facilitated with vertical drains.

  • PDF

Effects of Device Layout On The Performances of N-channel MuGFET (소자 레이아웃이 n-채널 MuGFET의 특성에 미치는 영향)

  • Lee, Sung-Min;Kim, Jin-Young;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The device performances of n-channel MuGFET with different fin numbers and fin widths but the total effective channel width is constant have been characterized. Two kinds of Pi-gate devices with fin number=16, fin width=55nm, and fin number=14, fin width=80nm have been used in characterization. The threshold voltage, effective electron mobility, threshold voltage roll-off, inverse subthreshold slope, PBTI, hot carrier degradation, and drain breakdown voltage have been characterized. From the measured results, the short channel effects have been reduced for narrow fin width and large fin numbers. PBTI degradation was more significant in devices with large fin number and narrow fin width but hot carrier degradation was similar for both devices. The drain breakdown voltage was higher for devices with narrow fin width and large fin numbers. With considering the short channel effects and device degradation, the devices with narrow fin width and large fin numbers are desirable in the device layout of MuGFETs.

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure (더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석)

  • Kim, Ji Won;Park, Kee Chan;Kim, Yong Sang;Jeon, Jae Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (I) Development of Lifetime Seismic Reliability Analysis S/W (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (I) 생애주기 지진신뢰성해석 프로그램 개발)

  • Lee, Kwang-Min;Choi, Eun-Soo;Cho, Hyo-Nam;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.965-976
    • /
    • 2006
  • A realistic lifetime seismic-reliability based approach is unavoidable to perform Life-Cycle Cost (LCC)-effective optimum design, maintenance, and retrofitting of structures against seismic risk. So far, though a number of researchers have proposed the LCC-based seismic design and retrofitting methodologies, most researchers have only focused on the methodological point. Accordingly, in most works, they have not been quantitatively considered critical factors such as the effects of seismic retrofit, maintenance, and environmental stressors on lifetime seismic reliability assessment of deteriorating structures. Thus, in this study, a systemic lifetime seismic reliability analysis methodology is proposed and a program HPYER-DRAIN2DX-DS is developed to perform the desired lifetime seismic reliability analysis. To demonstrate the applicability of the program, it is applied to an example bridge with or without seismic retrofit and maintenance strategies. From the numerical investigation, it may be positively stated that HYPER-DRAIN2DX-DS can be utilized as a useful numerical tool for LCC-effective optimum seismic design, maintenance, and retrofitting of bridges.

Laboratorial Study for Mechanical Prosperities of Intermediate Soils (중간토의 역학적 특성에 관한 실험적 연구)

  • 박중배;전몽각
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 1995
  • The purposes of this study are to investigate the mechanical prospeities of the inter mediate soils through consolidation tests and triaxial compression shear tests. The intermediate soils used in this study are artificial soils which are composed of sea clay, sand and it's crushed component. The relationship between plastic index and mechanical prosperties (permeability and compressibility) is investigated through series of consoli dation tests. Strain hardening phenomenon under shearing is explored based on several overconsideration ratios and strain rates in undrained shear tests. To make a comparative study difference of drain condition and strain rate, drain shear tests are performed with overconsolidation ratio.

  • PDF

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka;Gupta, R.S.;Chaujar, Rishu;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.169-181
    • /
    • 2011
  • In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.

A Behaviour Analysis on Clayey Ground and Steel Sheet Piles Subjected to Unsymmetrical Surcharges (편재하중을 받는 점토지반과 강널말뚝의 거동해석)

  • Lee, Moon Soo;Lee, Byoung Koo;Jeong, Jin Seob;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.977-988
    • /
    • 1994
  • In this paper, the comparisons between field measurments and numerical results ware performed for the settlements, lateral displacement in Jinwol interchange works on the Honam express way whose site was improved by sand drain for the constructions of over bridges, piers and abutments. The computer program was developed by coupling Biot's equation with Sekiguchi's elasto-viscoplastic model under plane strain conditions. Steel pipe piles for piers were replaced into the equivalent steel sheet pile wall. The characteristics of behavior for both the soil foundations and the sheet piles wall were investigated with the variation of axial force on the wall, rigidity of the wall, supported condition of sheet pile into hard strata and the location of anchored point.

  • PDF

SPICE Model of Drain Induced Barrier Lowering in Junctionless Cylindrical Surrounding Gate (JLCSG) MOSFET (무접합 원통형 MOSFET에 대한 드레인 유도 장벽 감소의 SPICE 모델)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-282
    • /
    • 2018
  • We propose a SPICE model of drain-induced barrier lowering (DIBL) for a junctionless cylindrical surrounding gate (JLCSG) MOSFETs. To this end, the potential distribution in the channel is obtained via the Poisson equation, and the threshold voltage model is presented for the JLCSG MOSFET. In a JLCSG nano-structured MOSFET, a channel radius affects the carrier transfer as well as the channel length and oxide thickness; therefore, DIBL should be expressed as a function of channel length, channel radius, and oxide thickness. Consequently, it can be seen that DIBLs are proportional to the power of -3 for the channel length, 2 for the channel radius, 1 for the thickness of the oxide film, and the constant of proportionality is 18.5 when the SPICE parameter, the static feedback coefficient ${\eta}$, is between 0.2 and 1.0. In particular, as the channel radius and the oxide film thickness increase, the value of ${\eta}$ remains nearly constant.

Characteristic of stress and strain of soft ground applied individual vacuum pressure (개별진공압이 적용된 연약지반의 응력과 변형 특성)

  • Ahn, Dong-Wook;Han, Sang-Jae;Kim, Byung-Il;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.467-472
    • /
    • 2010
  • Individual vacuum pressure method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or pre-loading method. In this study, given the inner displacement of the ground where the individual vacuum pressure is applied, this dissertation aimed to reproduce the state of stress in the ground that is subject to the constraints created by the depth of improvement area. Modified Cam Clay theory which made it possible to take into account the isotropic displacement of the ground was applied to the NAP-IVP used simulation; the conception of equivalent permeability proposed by Hird was also applied so that the 3-dimensional real construction effect of drain materials could be reflected in the analysis.

  • PDF

A Study of Three Dimensional Numerical Analysis on Vacuum Consolidation

  • Chung, Youn ln
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.5-20
    • /
    • 1997
  • A governing equation of uncoupled three dimensional finite strain theory of consolidation is presented. This equation is suitable for relatively thick layers, possessing large strain, non-linear material property, and variable permeability. A special numerical solution procedure has to be adopted for the finite difference scheme because the solution is not stable in using Forward-Time Centered-Space (FTCS) method and the governing equation is highly non-linear. The solution is capable of predicting settlement with respect to time. The results predicted by the developed method of analysis have been compared with those of experimental tests on different types of highly compressible soils with vertical wick drain. The uncoupled three dimensional finite strain theory of consolidation appears to predict settlement behavior well. A detailed comparison shows good agreement in terms of total settlement, and reasonable agreement with respect to time.

  • PDF