Browse > Article
http://dx.doi.org/10.5573/JSTS.2011.11.3.169

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications  

Malik, Priyanka (Electronic Sciences, Delhi University)
Gupta, R.S. (Electronics & Communication Engineering, Maharaja Agrasen Institute of Technology)
Chaujar, Rishu (Applied Physics, Delhi Technological University)
Gupta, Mridula (Electronic Sciences, Delhi University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.11, no.3, 2011 , pp. 169-181 More about this Journal
Abstract
In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.
Keywords
Corner effect; linearity; MLGME; RF; TRC MOSFET;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. Long, H. Ou, J.M. Kuo, et al, "Dual material gate (DMG) field effect transistor," IEEE Trans Electron Devices, Vol.46, pp.865-870, 1999.   DOI   ScienceOn
2 S.J. Lee, C.H. Choi, A. Kamath, R. Clark and D.L. Kwong, "Characterization and reliability of dual high-k gate dielectric stack $(poly-Si-HfO_{2}-SiO_{2})$ prepared by in situ RTCVD process for system-onchip applications," IEEE Electron Device Lett., Vol. 24, pp.105-107, 2003 .   DOI   ScienceOn
3 T. Kauerauf, B. Govoreanu, R. Degraeve, G. Groeseneken and H. Maes, "Scaling CMOS: finding the gate stack with the lowest leakage current Solid-State Electron," Vol.49, pp.695-701, 2005.   DOI   ScienceOn
4 P.H. Woerlee, M.J. Knitel, R. Van Langevelde, D.B.M. Klaassen, L.F. Tiemeijer, A.J. Scholten, A.T.A. Zegers-van Duijnhoven, "RF-CMOS performance trends," IEEE Trans. Electron Dev. Vol.48, pp. 1776-1782, 2001.   DOI   ScienceOn
5 S. Kaya, W. Ma, "Optimization of RF linearity in DG-MOSFETs," IEEE Electron Device Lett. Vol.25, pp. 308-310, 2004.   DOI   ScienceOn
6 N.D. Arora, R. Rios, C-L Huang and K. Raol, "PCIM: A Physically Short-Channel IGFET Model for Circuit Simulation," IEEE Trans. Electron Devices, Vol.41, pp.988-997, 1994.   DOI   ScienceOn
7 P. Malik, R. Chaujar, M. Gupta, R.S. Gupta, "Physics based Threshold Voltage Analysis of Gate Material Engineered Trapezoidal Recessed Channel (GME-TRC) Nanoscale MOSFET and its multilayered gate architecture," INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY, Vol.5, pp.361-368, 2010.
8 P. H.Woerlee, M. J. Knitel, R.V. Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten, and A. T. A. Zegers-van Duijnhoven, "RF-CMOS Performance Trends," IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol.48, pp.1776-1782, 2001.   DOI   ScienceOn
9 S. Kaya, and W. Ma, "Optimization of RF Linearity in DG-MOSFETs," IEEE ELECTRON DEVICE LETTERS, Vol.25, pp.308-310, 2004.   DOI   ScienceOn
10 M. Xiao-Hua, H. Yue, S. Bao-Gang, G. Hai-Xia, R. Hong-Xia, Z. Jin-Cheng, Z. Jin-Feng, Z. Xiao-Ju, and Z. Wei-Dong, "Fabrication and characterization of groove-gate MOSFETs based on a self-aligned CMOS process," Chin. Phys. Soc., Vol.15, pp.195- 198, 2006.   DOI   ScienceOn
11 G.D.Wilk, R.M.Wallace, J.M.Anthony, "High-K gate dielectrics: current status and materials properties considerations," J.Appl.Phys., Vol.89, pp. 5243-5275, 2001.   DOI   ScienceOn
12 B.-Y.Tsui, L.-F.Chin, "A Comprehensive Study on the FIBL of Nanoscale MOSFETs," IEEE Trans. Electron.Dev. Vol.51, pp.1733-1736, 2004.   DOI   ScienceOn
13 G. C.-F. Yeap, S. Krishnan, M.-R. Lin, "Fringinginduced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-K gate dielectrics," Electron. Lett. Vol.34, pp.1150-1152, 1998.   DOI   ScienceOn
14 C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy, R. Rai, L. Hebert, H. Tseng, B. White, P. Tobin, "Fermi level pinning at the PolySi/Metal Oxide interface," Symp.VLSI Tech.Dig, pp.9-10, 2003.
15 R.M. Wallace, G.Wilk, "Alternative Gate Dielectrics for Microelectronics," MRS Bull. Vol.27, pp.192- 197, 2002.
16 V. Mistra, G.Lucovsky, G.Parsons, "Issues in high-k gate stack interfaces," MRS Bull. Vol.27, pp.212- 216, 2002.   DOI
17 M. Xiao-Hua, H. Yue, S. Bao-Gang, G. Hai-Xia, R. Hong-Xia, Z. Jin-Cheng, Z. Jin-Feng, Z. Xiao-Ju, Z. Wei-Dong, "Fabrication and characterization of groove-gate MOSFETs based on a self-aligned CMOS process," Chin. Phy. Soc, Vol.15, pp.195- 198, 2006.   DOI   ScienceOn
18 J.Y. Seo, K.J. Lee, Y.S. Kim, S.Y. Lee, S.J. Hwang, C.K. Yoon, "Reliability for recessed channel structure n-MOSFET," Microelectron. Reliab., Vol.45, pp.1317-1320, 2005.   DOI   ScienceOn
19 I. Polishchuk, P. Ranade, T.J. King and C. Hu, "Dual work function metal gate CMOS technology using metal interdiffusion," IEEE Electron Device Lett., Vol.22, pp.444-446, 2001.
20 J. Lee, Y.S. Suh, H. Lazar, R. Jha, J. Gurganus, Y. Lin and V. Misra, "Compatibility of dual metal gate electrodes with high-k dielectrics for CMOS," IEDM Tech. Dig., pp.323-326, 2003.
21 S. Luan, H. X. Liu and R. X. Jia, "Performance investigations of novel dual-material gate (DMG) MOSFET with dielectric pockets (DP)," Science in China Series E: Technological Sciences, Vol.52, pp. 2400-2405, 2009.   DOI   ScienceOn
22 T.Y.Yum, L.Chiu, C.H.Chan and Q.Xue, "High- Efficiency Linear RF Amplifier-A Unified Circuit Approach to Achieving Compactness and Low Distortion," IEEE Trans. Microw. Theory Tech., Vol.54, pp.3255-3266, 2006.   DOI   ScienceOn
23 C.Yu, J.S.Yuan and H.Yang, "MOSFET Linearity Performance Degradation Subject to Drain and Gate Voltage Stress," IEEE Trans. Device Mater. Rel., Vol.4, pp.681-689, 2004.   DOI   ScienceOn
24 S.Y.Lee, Y.S.Lee and Y.H.Jeong, "A Novel Phase Measurement Technique for IM3 Components in RF Power Amplifiers," IEEE Trans. Microw. Theory Tech., Vol.54, pp.451-457, 2006.   DOI   ScienceOn
25 B.Razavi, RF Microelectronics, Prentice-Hall; Chapter-2, 1998.
26 P. Malik, R. Chaujar, M. Gupta, R.S. Gupta, "Linearity Performance Assessment of Nanoscale Gate Material Engineered Trapezoidal Recessed Channel (GME-TRC) MOSFET for RFIC design and Wireless application," Nanotech conference and Expo 2010, Anaheim, CA, United state of America, pp.705-708, June, 2010.
27 P. Malik, S.P. Kumar, R. Chaujar, M. Gupta, R.S. Gupta, "GATE MATERIAL ENGINEEREDTRAPEZIODAL RECESSED CHANNEL MOSFET FOR HIGH-PERFORMANCE ANALOG AND RF APPLICATIONS," Microwave and optical technology letter, Vol.52, pp.694-698, 2010.   DOI   ScienceOn
28 H.S. Momose, M. Ono,T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, H. Iwai, "1.5 nm directtunneling gate oxide Si MOSFET's," IEEE Trans. Electron.Dev. Vol.43, pp.1233-1242, 1996.   DOI   ScienceOn
29 H. Ren, Y. Hao, "The influence of geometric structure on the hot-carrier-effect immunity for deep-sub-micron grooved gate PMOSFET," Solid- State Electronic, Vol.46, pp.665-673, 2002.   DOI   ScienceOn
30 International Technology Roadmap for Semiconductors (ITRS). 2004 edition.